BioSpace.com

Biotech and Pharmaceutical
News & Jobs
Search the Site
 
   
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Browse Biotech Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  US Device
Europe
Asia

DIVERSITY

INVESTOR
Market Summary
News
IPOs

PROFILES
Company Profiles

START UPS
Companies
Events

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Biotech Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Hematology - Oncology - Biochemistry

Dimerization of ABCG2 Analysed by Bimolecular Fluorescence Complementation
Published: Monday, October 03, 2011
Author: Ameena J. Haider et al.

by Ameena J. Haider, Deborah Briggs, Tim J. Self, Hannah L. Chilvers, Nicholas D. Holliday, Ian D. Kerr

ABCG2 is one of three human ATP binding cassette transporters that are functionally capable of exporting a diverse range of substrates from cells. The physiological consequence of ABCG2 multidrug transport activity in leukaemia, and some solid tumours is the acquisition of cancer multidrug resistance. ABCG2 has a primary structure that infers that a minimal functional transporting unit would be a homodimer. Here we investigated the ability of a bimolecular fluorescence complementation approach to examine ABCG2 dimers, and to probe the role of individual amino acid substitutions in dimer formation. ABCG2 was tagged with fragments of venus fluorescent protein (vYFP), and this tagging did not perturb trafficking or function. Co-expression of two proteins bearing N-terminal and C-terminal fragments of YFP resulted in their association and detection of dimerization by fluorescence microscopy and flow cytometry. Point mutations in ABCG2 which may affect dimer formation were examined for alterations in the magnitude of fluorescence complementation signal. Bimolecular fluorescence complementation (BiFC) demonstrated specific ABCG2 dimer formation, but no changes in dimer formation, resulting from single amino acid substitutions, were detected by BiFC analysis.
  More...

 

//-->