PLoS By Category | Recent PLoS Articles

Immunology - Infectious Diseases - Public Health and Epidemiology - Rheumatology

Genetic Susceptibility to Acute Rheumatic Fever: A Systematic Review and Meta-Analysis of Twin Studies
Published: Friday, September 30, 2011
Author: Mark E. Engel et al.

by Mark E. Engel, Raphaella Stander, Jonathan Vogel, Adebowale A. Adeyemo, Bongani M. Mayosi


Acute rheumatic fever is considered to be a heritable condition, but the magnitude of the genetic effect is unknown. The objective of this study was to conduct a systematic review and meta-analysis of twin studies of concordance of acute rheumatic fever in order to derive quantitative estimates of the size of the genetic effect.


We searched PubMed/MEDLINE, ISI Web of Science, EMBASE, and Google Scholar from their inception to 31 January 2011, and bibliographies of retrieved articles, for twin studies of the concordance for acute rheumatic fever or rheumatic heart disease in monozygotic versus dizygotic twins that used accepted diagnostic criteria for acute rheumatic fever and zygosity without age, gender or language restrictions. Twin similarity was measured by probandwise concordance rate and odds ratio (OR), and aggregate probandwise concordance risk was calculated by combining raw data from each study. ORs from separate studies were combined by random-effects meta-analysis to evaluate association between zygosity status and concordance. Heritability was estimated by fitting a variance components model to the data.


435 twin pairs from six independent studies met the inclusion criteria. The pooled probandwise concordance risk for acute rheumatic fever was 44% in monozygotic twins and 12% in dizygotic twins, and the association between zygosity and concordance was strong (OR 6.39; 95% confidence interval, 3.39 to 12.06; P<0.001), with no significant study heterogeneity (P?=?0.768). The estimated heritability across all the studies was 60%.


Acute rheumatic fever is an autoimmune disorder with a high heritability. The discovery of all genetic susceptibility loci through whole genome scanning may provide a clinically useful genetic risk prediction tool for acute rheumatic fever and its sequel, rheumatic heart disease.