BioSpace.com

Biotech and Pharmaceutical
News & Jobs
Search the Site
 
   
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Browse Biotech Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  US Device
Europe
Asia

DIVERSITY

INVESTOR
Market Summary
News
IPOs

PROFILES
Company Profiles

START UPS
Companies
Events

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Biotech Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Diabetes and Endocrinology - Neurological Disorders - Neuroscience - Pediatrics and Child Health - Physiology - Radiology and Medical Imaging

Global and Regional Differences in Brain Anatomy of Young Children Born Small for Gestational Age
Published: Tuesday, September 13, 2011
Author: Henrica M. A. De Bie et al.

by Henrica M. A. De Bie, Kim J. Oostrom, Maria Boersma, Dick J. Veltman, Frederik Barkhof, Henriette A. Delemarre-van de Waal, Martijn P. van den Heuvel

In children who are born small for gestational age (SGA), an adverse intrauterine environment has led to underdevelopment of both the body and the brain. The delay in body growth is (partially) restored during the first two years in a majority of these children. In addition to a negative influence on these physical parameters, decreased levels of intelligence and cognitive impairments have been described in children born SGA. In this study, we used magnetic resonance imaging to examine brain anatomy in 4- to 7-year-old SGA children with and without complete bodily catch-up growth and compared them to healthy children born appropriate for gestational age. Our findings demonstrate that these children strongly differ on brain organisation when compared with healthy controls relating to both global and regional anatomical differences. Children born SGA displayed reduced cerebral and cerebellar grey and white matter volumes, smaller volumes of subcortical structures and reduced cortical surface area. Regional differences in prefrontal cortical thickness suggest a different development of the cerebral cortex. SGA children with bodily catch-up growth constitute an intermediate between those children without catch-up growth and healthy controls. Therefore, bodily catch-up growth in children born SGA does not implicate full catch-up growth of the brain.
  More...

 

//-->