PLoS By Category | Recent PLoS Articles

Dermatology - Physiology - Radiology and Medical Imaging


Subcutaneous Fascial Bands—A Qualitative and Morphometric Analysis
Published: Thursday, September 08, 2011
Author: Weihui Li et al.

by Weihui Li, Andrew C. Ahn

Background

Although fascial bands within the subcutaneous (SQ) layer are commonly seen in ultrasound images, little is known about their functional role, much less their structural characteristics. This study's objective is to describe the morphological features of SQ fascial bands and to systematically evaluate the bands using image analyses tools and morphometric measures.

Methods

In 28 healthy volunteers, ultrasound images were obtained at three body locations: the lateral aspect of the upper arm, medial aspect of the thigh and posterior aspect of lower leg. Using image analytical techniques, the total SQ band area, fascial band number, fascial band thickness, and SQ zone (layer) thickness were determined. In addition, the SQ spatial coherence was calculated based on the eigenvalues associated with the largest and smallest eigenvectors of the images.

Results

Fascial bands at these sites were contiguous with the dermis and the epimysium forming an interconnected network within the subcutaneous tissue. Subcutaneous blood vessels were also frequently encased by these fascial bands. The total SQ fascial band area was greater at the thigh and calf compared to the arm and was unrelated to SQ layer (zone) thickness. The thigh was associated with highest average number of fascial bands while calf was associated with the greatest average fascial band thickness. Across body regions, greater SQ zone thickness was associated with thinner fascial bands. SQ coherence was significantly associated with SQ zone thickness and body location (calf with statistically greater coherence compared to arm).

Conclusion

Fascial bands are structural bridges that mechanically link the skin, subcutaneous layer, and deeper muscle layers. This cohesive network also encases subcutaneous vessels and may indirectly mediate blood flow. The quantity and morphological characteristics of the SQ fascial band may reflect the composite mechanical forces experienced by the body part.

  More...

 
//-->