BioSpace.com

Biotech and Pharmaceutical
News & Jobs
Search the Site
 
   
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Browse Biotech Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  US Device
Europe
Asia

DIVERSITY

INVESTOR
Market Summary
News
IPOs

PROFILES
Company Profiles

START UPS
Companies
Events

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Biotech Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Science Policy

Studies on Insecticidal Activities and Action Mechanism of Novel Benzoylphenylurea Candidate NK-17
Published: Tuesday, June 11, 2013
Author: Yongqiang Li et al.

by Yongqiang Li, Yaoguo Qin, Na Yang, Yufeng Sun, Xinling Yang, Ranfeng Sun, Qingmin Wang, Yun Ling

Insecticidal activity of NK-17 was evaluated both in laboratory and in field. It was found that the toxicity of NK-17 against S. exigua was 1.93 times and 2.69 times those of hexaflumuron and chlorfluazuron respectively, and the toxicity of NK-17 against P. xylostella was 1.36 times and 1.90 times those of hexaflumuron and chlorfluazuron respectively, and the toxicity of NK-17 against M. separate was 18.24 times those of hexaflumuron in laboratory, and 5% NK-17 EC at 60 g a.i ha-1 can control S. exigua and P. xylostella with the best control efficiency of about 89% and over 88% respectively in Changsha and Tianjin in field. The insecticidal mechanism of NK-17 was explored for the first time by utilizing the fluorescence polarization method. NK-17 could bind to sulfonylurea receptor (SUR) of B. germanica with stronger affinity comparing to diflubenzuron and glibenclamide, which suggested that NK-17 may also act on the site of SUR to inhibit the chitin synthesis in insect body and the result can well explain that NK-17 exhibited stronger toxicity against B. germanica than diflubenzuron and glibenclamide in vivo.
  More...

 

//-->