BioSpace.com

Biotech and Pharmaceutical
News & Jobs
Search the Site
 
   
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Browse Biotech Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  US Device
Europe
Asia

DIVERSITY

INVESTOR
Market Summary
News
IPOs

PROFILES
Company Profiles

START UPS
Companies
Events

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Biotech Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Biochemistry - Ophthalmology

LEDGF1-326 Decreases P23H and Wild Type Rhodopsin Aggregates and P23H Rhodopsin Mediated Cell Damage in Human Retinal Pigment Epithelial Cells
Published: Wednesday, September 07, 2011
Author: Rinku Baid et al.

by Rinku Baid, Robert I. Scheinman, Toshimichi Shinohara, Dhirendra P. Singh, Uday B. Kompella

Background

P23H rhodopsin, a mutant rhodopsin, is known to aggregate and cause retinal degeneration. However, its effects on retinal pigment epithelial (RPE) cells are unknown. The purpose of this study was to determine the effect of P23H rhodopsin in RPE cells and further assess whether LEDGF1-326, a protein devoid of heat shock elements of LEDGF, a cell survival factor, reduces P23H rhodopsin aggregates and any associated cellular damage.

Methods

ARPE-19 cells were transiently transfected/cotransfected with pLEDGF1-326 and/or pWT-Rho (wild type)/pP23H-Rho. Rhodopsin mediated cellular damage and rescue by LEDGF1-326 was assessed using cell viability, cell proliferation, and confocal microscopy assays. Rhodopsin monomers, oligomers, and their reduction in the presence of LEDGF1-326 were quantified by western blot analysis. P23H rhodopsin mRNA levels in the presence and absence of LEDGF1-326 was determined by real time quantitative PCR.

Principal Findings

P23H rhodopsin reduced RPE cell viability and cell proliferation in a dose dependent manner, and disrupted the nuclear material. LEDGF1-326 did not alter P23H rhodopsin mRNA levels, reduced its oligomers, and significantly increased RPE cell viability as well as proliferation, while reducing nuclear damage. WT rhodopsin formed oligomers, although to a smaller extent than P23H rhodopsin. Further, LEDGF1-326 decreased WT rhodopsin aggregates.

Conclusions

P23H rhodopsin as well as WT rhodopsin form aggregates in RPE cells and LEDGF1-326 decreases these aggregates. Further, LEDGF1-326 reduces the RPE cell damage caused by P23H rhodopsin. LEDGF1-326 might be useful in treating cellular damage associated with protein aggregation diseases such as retinitis pigmentosa.

  More...

 

//-->