BioSpace.com

Biotech and Pharmaceutical
News & Jobs
Search the Site
 
   
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Browse Biotech Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  US Device
Europe
Asia

DIVERSITY

INVESTOR
Market Summary
News
IPOs

PROFILES
Company Profiles

START UPS
Companies
Events

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Biotech Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Ophthalmology - Public Health and Epidemiology

Single Nucleotide Polymorphisms in MCP-1 and Its Receptor Are Associated with the Risk of Age Related Macular Degeneration
Published: Wednesday, November 21, 2012
Author: Akshay Anand et al.

by Akshay Anand, Neel Kamal Sharma, Amod Gupta, Sudesh Prabhakar, Suresh Kumar Sharma, Ramandeep Singh, Pawan Kumar Gupta

Background

Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly population. We have shown previously that mice deficient in monocyte chemoattractant protein-1 (MCP1/CCL2) or its receptor (CCR2) develop the features of AMD in senescent mice, however, the human genetic evidence so far is contradictory. We hypothesized that any dysfunction in the CCL2 and its receptor result could be the contributing factor in pathogenesis of AMD.

Methods and Findings

133 AMD patients and 80 healthy controls were enrolled for this study. Single neucleotid Polymorphism for CCL2 and CCR2 was analyzed by real time PCR. CCL2 levels were determined by enzyme-linked immunosorbent assay (ELISA) after normalization to total serum protein and percentage (%) of CCR2 expressing peripheral blood mononuclear cells (PBMCs) was evaluated using Flow Cytometry. The genotype and allele frequency for both CCL2 and CCR2 was found to be significantly different between AMD and normal controls. The CCL2 ELISA levels were significantly higher in AMD patients and flow Cytometry analysis revealed significantly reduced CCR2 expressing PBMCs in AMD patients as compared to normal controls.

Conclusions

We analyzed the association between single neucleotide polymorphisms (SNPs) of CCL2 (rs4586) and CCR2 (rs1799865) with their respective protein levels. Our results revealed that individuals possessing both SNPs are at a higher risk of development of AMD.

  More...

 

//-->