PLoS By Category | Recent PLoS Articles

Hematology - Infectious Diseases - Obstetrics - Pediatrics and Child Health - Public Health and Epidemiology

Maternal Anaemia at Delivery and Haemoglobin Evolution in Children during Their First 18 Months of Life Using Latent Class Analysis
Published: Wednesday, November 21, 2012
Author: Kobto G. Koura et al.

by Kobto G. Koura, Smaïla Ouédraogo, Gilles Cottrell, Agnès Le Port, Achille Massougbodji, André Garcia


Anaemia during pregnancy and at delivery is an important public health problem in low- and middle-income countries. Its association with the children’s haemoglobin level over time remains unclear. Our goals were to identify distinct haemoglobin level trajectories using latent class analysis and to assess the association between these trajectories and maternal anaemia and other risk factors.


A prospective study of children from birth to 18 months of life was conducted in a rural setting in Tori-Bossito, Benin. The main outcome measure was the haemoglobin levels repeatedly measured at 3, 6, 9, 12, 15 and 18 months. Variables were collected from the mothers at delivery and from their children at birth and during the follow-up. The analyses were performed by means of Latent Class Analysis which has never been used for this kind of data. All the analyses were performed with Stata software, version 11.0, using the generalized linear latent and mixed model (GLLAMM) framework.


We showed that 33.7% of children followed a low haemoglobin trajectory and 66.3% a high trajectory during the first 18 months of life. Newborn anaemia, placental malaria, malaria attack, sickle cell trait and male gender were significantly associated with a lower children’s haemoglobin level over time, whereas maternal age, children living in a polygamous family and with good feeding practices had a higher Hb level in the first18 months. We also showed that maternal anaemia was a predictor for ‘low haemoglobin level trajectory’ group membership but have no significant effect on children haemoglobin level over time.


Latent Class Analyses framework seems well suited to analyse longitudinal data under the hypothesis that different subpopulations of subjects are present in the data, each with its own set of parameters, with distinctive evolutions that themselves may reflect distinctive aetiologies.