PLoS By Category | Recent PLoS Articles

Oncology - Physiology - Public Health and Epidemiology - Urology

Gene Expression and Biological Pathways in Tissue of Men with Prostate Cancer in a Randomized Clinical Trial of Lycopene and Fish Oil Supplementation
Published: Thursday, September 01, 2011
Author: Mark Jesus M. Magbanua et al.

by Mark Jesus M. Magbanua, Ritu Roy, Eduardo V. Sosa, Vivian Weinberg, Scott Federman, Michael D. Mattie, Millie Hughes-Fulford, Jeff Simko, Katsuto Shinohara, Christopher M. Haqq, Peter R. Carroll, June M. Chan


Studies suggest that micronutrients may modify the risk or delay progression of prostate cancer; however, the molecular mechanisms involved are poorly understood. We examined the effects of lycopene and fish oil on prostate gene expression in a double-blind placebo-controlled randomized clinical trial.


Eighty-four men with low risk prostate cancer were stratified based on self-reported dietary consumption of fish and tomatoes and then randomly assigned to a 3-month intervention of lycopene (n?=?29) or fish oil (n?=?27) supplementation or placebo (n?=?28). Gene expression in morphologically normal prostate tissue was studied at baseline and at 3 months via cDNA microarray analysis. Differential gene expression and pathway analyses were performed to identify genes and pathways modulated by these micronutrients.


Global gene expression analysis revealed no significant individual genes that were associated with high intake of fish or tomato at baseline or after 3 months of supplementation with lycopene or fish oil. However, exploratory pathway analyses of rank-ordered genes (based on p-values not corrected for multiple comparisons) revealed the modulation of androgen and estrogen metabolism in men who routinely consumed more fish (p?=?0.029) and tomato (p?=?0.008) compared to men who ate less. In addition, modulation of arachidonic acid metabolism (p?=?0.01) was observed after 3 months of fish oil supplementation compared with the placebo group; and modulation of nuclear factor (erythroid derived-2) factor 2 or Nrf2-mediated oxidative stress response for either supplement versus placebo (fish oil: p?=?0.01, lycopene: p?=?0.001).


We did not detect significant individual genes associated with dietary intake and supplementation of lycopene and fish oil. However, exploratory analyses revealed candidate in vivo pathways that may be modulated by these micronutrients.

Trial Registration NCT00402285