PLoS By Category | Recent PLoS Articles

Biochemistry - Biotechnology - Oncology - Pharmacology - Urology


Activation of AMP-Activated Protein Kinase by 3,3'-Diindolylmethane (DIM) Is Associated with Human Prostate Cancer Cell Death In Vitro and In Vivo
Published: Tuesday, October 09, 2012
Author: Di Chen et al.

by Di Chen, Sanjeev Banerjee, Qiuzhi C. Cui, Dejuan Kong, Fazlul H. Sarkar, Q. Ping Dou

There is a large body of scientific evidence suggesting that 3,3'-Diindolylmethane (DIM), a compound derived from the digestion of indole-3-carbinol, which is abundant in cruciferous vegetables, harbors anti-tumor activity in vitro and in vivo. Accumulating evidence suggests that AMP-activated protein kinase (AMPK) plays an essential role in cellular energy homeostasis and tumor development and that targeting AMPK may be a promising therapeutic option for cancer treatment in the clinic. We previously reported that a formulated DIM (BR-DIM; hereafter referred as B-DIM) with higher bioavailability was able to induce apoptosis and inhibit cell growth, angiogenesis, and invasion of prostate cancer cells. However, the precise molecular mechanism(s) for the anti-cancer effects of B-DIM have not been fully elucidated. In the present study, we investigated whether AMP-activated protein kinase (AMPK) is a molecular target of B-DIM in human prostate cancer cells. Our results showed, for the first time, that B-DIM could activate the AMPK signaling pathway, associated with suppression of the mammalian target of rapamycin (mTOR), down-regulation of androgen receptor (AR) expression, and induction of apoptosis in both androgen-sensitive LNCaP and androgen-insensitive C4-2B prostate cancer cells. B-DIM also activates AMPK and down-regulates AR in androgen-independent C4-2B prostate tumor xenografts in SCID mice. These results suggest that B-DIM could be used as a potential anti-cancer agent in the clinic for prevention and/or treatment of prostate cancer regardless of androgen responsiveness, although functional AR may be required.
  More...

 
//-->