BioSpace.com

Biotech and Pharmaceutical
News & Jobs
Search the Site
 
   
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Browse Biotech Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  US Device
Europe
Asia

DIVERSITY

INVESTOR
Market Summary
News
IPOs

PROFILES
Company Profiles

START UPS
Companies
Events

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Biotech Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Biochemistry - Immunology - Neurological Disorders - Neuroscience - Ophthalmology

Postconditioning with Inhaled Carbon Monoxide Counteracts Apoptosis and Neuroinflammation in the Ischemic Rat Retina
Published: Friday, September 28, 2012
Author: Nils Schallner et al.

by Nils Schallner, Matthias Fuchs, Christian I. Schwer, Torsten Loop, Hartmut Buerkle, Wolf Alexander Lagrèze, Christian van Oterendorp, Julia Biermann, Ulrich Goebel

Purpose

Ischemia and reperfusion injury (I/R) of neuronal structures and organs is associated with increased morbidity and mortality due to neuronal cell death. We hypothesized that inhalation of carbon monoxide (CO) after I/R injury (‘postconditioning’) would protect retinal ganglion cells (RGC).

Methods

Retinal I/R injury was performed in Sprague-Dawley rats (n?=?8) by increasing ocular pressure (120 mmHg, 1 h). Rats inhaled room air or CO (250 ppm) for 1 h immediately following ischemia or with 1.5 and 3 h latency. Retinal tissue was harvested to analyze Bcl-2, Bax, Caspase-3, HO-1 expression and phosphorylation of the nuclear transcription factor (NF)-?B, p38 and ERK-1/2 MAPK. NF-?B activation was determined and inhibition of ERK-1/2 was performed using PD98059 (2 mg/kg). Densities of fluorogold prelabeled RGC were analyzed 7 days after injury. Microglia, macrophage and Müller cell activation and proliferation were evaluated by Iba-1, GFAP and Ki-67 staining.

Results

Inhalation of CO after I/R inhibited Bax and Caspase-3 expression (Bax: 1.9±0.3 vs. 1.4±0.2, p?=?0.028; caspase-3: 2.0±0.2 vs. 1.5±0.1, p?=?0.007; mean±S.D., fold induction at 12 h), while expression of Bcl-2 was induced (1.2±0.2 vs. 1.6±0.2, p?=?0.001; mean±S.D., fold induction at 12 h). CO postconditioning suppressed retinal p38 phosphorylation (p?=?0.023 at 24 h) and induced the phosphorylation of ERK-1/2 (p<0.001 at 24 h). CO postconditioning inhibited the expression of HO-1. The activation of NF-?B, microglia and Müller cells was potently inhibited by CO as well as immigration of proliferative microglia and macrophages into the retina. CO protected I/R-injured RGC with a therapeutic window at least up to 3 h (n?=?8; RGC/mm2; mean±S.D.: 1255±327 I/R only vs. 1956±157 immediate CO treatment, vs. 1830±109 1.5 h time lag and vs. 1626±122 3 h time lag; p<0.001). Inhibition of ERK-1/2 did not counteract the CO effects (RGC/mm2: 1956±157 vs. 1931±124, mean±S.D., p?=?0.799).

Conclusion

Inhaled CO, administered after retinal ischemic injury, protects RGC through its strong anti-apoptotic and anti-inflammatory effects.

  More...

 

//-->