BioSpace.com

Biotech and Pharmaceutical
News & Jobs
Search the Site
 
   
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Browse Biotech Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  US Device
Europe
Asia

DIVERSITY

INVESTOR
Market Summary
News
IPOs

PROFILES
Company Profiles

START UPS
Companies
Events

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Biotech Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Biochemistry - Diabetes and Endocrinology - Hematology - Neurological Disorders - Neuroscience - Physiology

The Preventive and Therapeutic Effects of Intravenous Human Adipose-Derived Stem Cells in Alzheimer’s Disease Mice
Published: Wednesday, September 26, 2012
Author: Saeromi Kim et al.

by Saeromi Kim, Keun-A Chang, Jeong a. Kim, Hyeong-Geun Park, Jeong Chan Ra, Hye-Sun Kim, Yoo-Hun Suh

Alzheimer’s disease (AD) is characterized by the accumulation of amyloid plaques and neurofibrillary tangles accompanied by cognitive dysfunction. The aim of the present study was to elucidate preventive and therapeutic potential of stem cells for AD. Among stem cells, autologous human adipose-derived stem cells (hASCs) elicit no immune rejection responses, tumorigenesis, or ethical problems. We found that intravenously transplanted hASCs passed through the BBB and migrated into the brain. The learning, memory and pathology in an AD mouse model (Tg2576) mice greatly improved for at least 4 months after intravenous injection of hASC. The number of amyloid plaques and Aß levels decreased significantly in the brains of hASC-injected Tg mice compared to those of Tg-sham mice. Here, we first report that intravenously or intracerebrally transplanted hASCs significantly rescues memory deficit and neuropathology, in the brains of Tg mice by up-regulating IL-10 and VEGF and be a possible use for the prevention and treatment of AD.
  More...

 

//-->