BioSpace.com

Biotech and Pharmaceutical
News & Jobs
Search the Site
 
   
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Browse Biotech Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  US Device
Europe
Asia

DIVERSITY

INVESTOR
Market Summary
News
IPOs

PROFILES
Company Profiles

START UPS
Companies
Events

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Biotech Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Neurological Disorders - Neuroscience - Surgery

Aging Effect on Neurotrophic Activity of Human Mesenchymal Stem Cells
Published: Monday, September 17, 2012
Author: Maria Brohlin et al.

by Maria Brohlin, Paul J. Kingham, Liudmila N. Novikova, Lev N. Novikov, Mikael Wiberg

Clinical efficacy of stem cells for nerve repair is likely to be influenced by issues including donor age and in vitro expansion time. We isolated human mesenchymal stem cells (MSC) from bone marrow of young (16–18 years) and old (67–75 years) donors and analyzed their capacity to differentiate and promote neurite outgrowth from dorsal root ganglia (DRG) neurons. Treatment of MSC with growth factors (forskolin, basic fibroblast growth factor, platelet derived growth factor-AA and glial growth factor-2) induced protein expression of the glial cell marker S100 in cultures from young but not old donors. MSC expressed various neurotrophic factor mRNA transcripts. Growth factor treatment enhanced the levels of BDNF and VEGF transcripts with corresponding increases in protein release in both donor cell groups. MSC in co-culture with DRG neurons significantly enhanced total neurite length which, in the case of young but not old donors, was further potentiated by treatment of the MSC with the growth factors. Stem cells from young donors maintained their proliferation rate over a time course of 9 weeks whereas those from the old donors showed increased population doubling times. MSC from young donors, differentiated with growth factors after long-term culture, maintained their ability to enhance neurite outgrowth of DRG. Therefore, MSC isolated from young donors are likely to be a favourable cell source for nerve repair.
  More...

 

//-->