BioSpace.com

Biotech and Pharmaceutical
News & Jobs
Search the Site
 
   
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Browse Biotech Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  US Device
Europe
Asia

DIVERSITY

INVESTOR
Market Summary
News
IPOs

PROFILES
Company Profiles

START UPS
Companies
Events

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Biotech Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Geriatrics - Mathematics - Non-Clinical Medicine - Public Health and Epidemiology

Does Multimorbidity Influence the Occurrence Rates of Chronic Conditions? A Claims Data Based Comparison of Expected and Observed Prevalence Rates
Published: Monday, September 17, 2012
Author: Ingmar Schäfer

by Ingmar Schäfer

Objective

Multimorbidity is a complex phenomenon with an almost endless number of possible disease combinations with unclear implications. One important aspect in analyzing the clustering of diseases is to distinguish between random coexistence and statistical dependency. We developed a model to account for random coexistence based on stochastic distribution. We analyzed if the number of diseases of the patients influences the occurrence rates of chronic conditions.

Methods

We analyzed claims data of 121,389 persons aged 65+ using a list of 46 chronic conditions. Expected prevalences were simulated by drawing without replacement from all observed diseases using observed overall prevalences as initial probability weights. To determine if a disease occurs more or less frequently than expected by chance we calculated observed-minus-expected deltas for each disease. We defined clinical relevance as |delta| = 5.0%. 18 conditions were excluded because of a prevalence < 5.0%.

Results

We found that (1) two chronic conditions (e.g. hypertension) were more frequent than expected in patients with a low number of comorbidities; (2) four conditions (e.g. renal insufficiency) were more frequent in patients with many comorbidities; (3) six conditions (e.g. cancer) were less frequent with many comorbidities; and (4) 16 conditions had an average course of prevalences.

Conclusion

A growing extent of multimorbidity goes along with a rapid growth of prevalences. This is for the largest part merely a stochastic effect. If we account for this effect we find that only few diseases deviate from the expected prevalence curves. Causes for these deviations are discussed. Our approach also has methodological implications: Naive analyses of multimorbidity might easily be affected by bias, because the prevalence of all chronic conditions necessarily increases with a growing extent of multimorbidity. We should therefore always examine and discuss the stochastic interrelations between the chronic conditions we analyze.

  More...

 

//-->