BioSpace.com

Biotech and Pharmaceutical
News & Jobs
Search the Site
 
   
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Browse Biotech Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  US Device
Europe
Asia

DIVERSITY

INVESTOR
Market Summary
News
IPOs

PROFILES
Company Profiles

START UPS
Companies
Events

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Biotech Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Neuroscience - Physiology - Surgery

A Novel Animal Model of Partial Optic Nerve Transection Established Using an Optic Nerve Quantitative Amputator
Published: Tuesday, September 04, 2012
Author: Xu Wang et al.

by Xu Wang, Ying Li, Yan He, Hong-Sheng Liang, En-Zhong Liu

Background

Research into retinal ganglion cell (RGC) degeneration and neuroprotection after optic nerve injury has received considerable attention and the establishment of simple and effective animal models is of critical importance for future progress.

Methodology/Principal Findings

In the present study, the optic nerves of Wistar rats were semi-transected selectively with a novel optic nerve quantitative amputator. The variation in RGC density was observed with retro-labeled fluorogold at different time points after nerve injury. The densities of surviving RGCs in the experimental eyes at different time points were 1113.69±188.83 RGC/mm2 (the survival rate was 63.81% compared with the contralateral eye of the same animal) 1 week post surgery; 748.22±134.75 /mm2 (46.16% survival rate) 2 weeks post surgery; 505.03±118.67 /mm2 (30.52% survival rate) 4 weeks post surgery; 436.86±76.36 /mm2 (24.01% survival rate) 8 weeks post surgery; and 378.20±66.74 /mm2 (20.30% survival rate) 12 weeks post surgery. Simultaneously, we also measured the axonal distribution of optic nerve fibers; the latency and amplitude of pattern visual evoke potentials (P-VEP); and the variation in pupil diameter response to pupillary light reflex. All of these observations and profiles were consistent with post injury variation characteristics of the optic nerve. These results indicate that we effectively simulated the pathological process of primary and secondary injury after optic nerve injury.

Conclusions/Significance

The present quantitative transection optic nerve injury model has increased reproducibility, effectiveness and uniformity. This model is an ideal animal model to provide a foundation for researching new treatments for nerve repair after optic nerve and/or central nerve injury.

  More...

 

//-->