BioSpace.com

Biotech and Pharmaceutical
News & Jobs
Search the Site
 
   
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Browse Biotech Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  US Device
Europe
Asia

DIVERSITY

INVESTOR
Market Summary
News
IPOs

PROFILES
Company Profiles

START UPS
Companies
Events

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Biotech Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Biotechnology - Molecular Biology - Pediatrics and Child Health

Altered Cell Cycle Gene Expression and Apoptosis in Post-Implantation Dog Parthenotes
Published: Wednesday, August 15, 2012
Author: Jung Eun Park et al.

by Jung Eun Park, Min Jung Kim, Seung Kwon Ha, So Gun Hong, Hyun Ju Oh, Geon A. Kim, Eun Jung Park, Jung Taek Kang, Islam M. Saadeldin, Goo Jang, Byeong Chun Lee

Mature oocytes can be parthenogenetically activated by a variety of methods and the resulting embryos are valuable for studies of the respective roles of paternal and maternal genomes in early mammalian development. In the present study, we report the first successful development of parthenogenetic canine embryos to the post-implantation stage. Nine out of ten embryo transfer recipients became pregnant and successful in utero development of canine parthenotes was confirmed. For further evaluation of these parthenotes, their fetal development was compared with artificially inseminated controls and differentially expressed genes (DEGs) were compared using ACP RT-PCR, histological analysis and immunohistochemistry. We found formation of the limb-bud and no obvious differences in histological appearance of the canine parthenote recovered before degeneration occurred; however canine parthenotes were developmentally delayed with different cell cycle regulating-, mitochondria-related and apoptosis-related gene expression patterns compared with controls. In conclusion, our protocols were suitable for activating canine oocytes artificially and supported early fetal development. We demonstrated that the developmental abnormalities in canine parthenotes may result from defective regulation of apoptosis and aberrant gene expression patterns, and provided evidence that canine parthenotes can be a useful tool for screening and for comparative studies of imprinted genes.
  More...

 

//-->