PLoS By Category | Recent PLoS Articles

Biotechnology - Ophthalmology


Derivation of Corneal Endothelial Cell-Like Cells from Rat Neural Crest Cells In Vitro
Published: Tuesday, July 31, 2012
Author: Chengqun Ju et al.

by Chengqun Ju, Kai Zhang, Xinyi Wu

The aim of this study was to investigate the feasibility of inducing rat neural crest cells (NCC) to differentiate to functional corneal endothelial cell (CEC)-like cells in vitro. Rat NCC were induced with adult CEC-derived conditioned medium. Immunofluorescence, flow cytometry and real time RT-PCR assay were used to detect expression of the corneal endothelium differentiation marker N-cadherin and transcription factors FoxC1 and Pitx2. CFDA SE-labeled CEC-like cells were transplanted to the corneal endothelium of a rat corneal endothelium deficiency model, and an eye-down position was maintained for 24 hours to allow cell attachment. The animals were observed for as long as 2 months after surgery and underwent clinical and histological examination. Spindle-like NCC turned to polygonal CEC-like after induction and expressed N-cadherin, FoxC1, Pitx2, zonula occludens-1 and sodium-potassium pump Na+/K+ ATPase. The corneas of the experimental group were much clearer than those of the control group and the mean corneal thickness in the experimental group was significantly less than in the control group7, 14, 21 and 28 days after surgery. Confocal microscopy through focusing and histological analysis confirmed that green fluorescence-positive CEC-like cells formed a monolayer covering the Descemet’s membrane in the experimental group. In conclusion, CEC-like cells derived from NCCs displayed characters of native CEC, and the induction protocol provides guidance for future human CEC induction from NCC.
  More...

 
//-->