PLoS By Category | Recent PLoS Articles

Neurological Disorders - Neuroscience - Pathology - Physiology - Surgery


A Surgical Model of Permanent and Transient Middle Cerebral Artery Stroke in the Sheep
Published: Friday, July 27, 2012
Author: Adam J. Wells et al.

by Adam J. Wells, Robert Vink, Peter C. Blumbergs, Brian P. Brophy, Stephen C. Helps, Steven J. Knox, Renée J. Turner

Background

Animal models are essential to study the pathophysiological changes associated with focal occlusive stroke and to investigate novel therapies. Currently used rodent models have yielded little clinical success, however large animal models may provide a more suitable alternative to improve clinical translation. We sought to develop a model of acute proximal middle cerebral artery (MCA) ischemic stroke in sheep, including both permanent occlusion and transient occlusion with reperfusion.

Materials and Methods

18 adult male and female Merino sheep were randomly allocated to one of three groups (n?=?6/gp): 1) sham surgery; 2) permanent proximal MCA occlusion (MCAO); or 3) temporary MCAO with aneurysm clip. All animals had invasive arterial blood pressure, intracranial pressure and brain tissue oxygen monitoring. At 4 h following vessel occlusion or sham surgery animals were killed by perfusion fixation. Brains were processed for histopathological examination and infarct area determination. 6 further animals were randomized to either permanent (n?=?3) or temporary MCAO (n?=?3) and then had magnetic resonance imaging (MRI) at 4 h after MCAO.

Results

Evidence of ischemic injury in an MCA distribution was seen in all stroke animals. The ischemic lesion area was significantly larger after permanent (28.8%) compared with temporary MCAO (14.6%). Sham animals demonstrated no evidence of ischemic injury. There was a significant reduction in brain tissue oxygen partial pressure after permanent vessel occlusion between 30 and 210 mins after MCAO. MRI at 4 h demonstrated complete proximal MCA occlusion in the permanent MCAO animals with a diffusion deficit involving the whole right MCA territory, whereas temporary MCAO animals demonstrated MRA evidence of flow within the right MCA and smaller predominantly cortical diffusion deficits.

Conclusions

Proximal MCAO can be achieved in an ovine model of stroke via a surgical approach. Permanent occlusion creates larger infarct volumes, however aneurysm clip application allows for reperfusion.

  More...

 
//-->