PLoS By Category | Recent PLoS Articles

Biotechnology - Hematology - Molecular Biology


Targeted Delivery of Human VEGF Gene via Complexes of Magnetic Nanoparticle-Adenoviral Vectors Enhanced Cardiac Regeneration
Published: Thursday, July 26, 2012
Author: Yue Zhang et al.

by Yue Zhang, Wenzhong Li, Lailiang Ou, Weiwei Wang, Evgenya Delyagina, Cornelia Lux, Heiko Sorg, Kristina Riehemann, Gustav Steinhoff, Nan Ma

This study assessed the concept of whether delivery of magnetic nanobeads (MNBs)/adenoviral vectors (Ad)–encoded hVEGF gene (AdhVEGF) could regenerate ischaemically damaged hearts in a rat acute myocardial infarction model under the control of an external magnetic field. Adenoviral vectors were conjugated to MNBs with the Sulfo-NHS-LC-Biotin linker. In vitro transduction efficacy of MNBs/Ad–encoded luciferase gene (Adluc) was compared with Adluc alone in human umbilical vein endothelial cells (HUVECs) under magnetic field stimulation. In vivo, in a rat acute myocardial infarction (AMI) model, MNBs/AdhVEGF complexes were injected intravenously and an epicardial magnet was employed to attract the circulating MNBs/AdhVEGF complexes. In vitro, compared with Adluc alone, MNBs/Adluc complexes had a 50-fold higher transduction efficiency under the magnetic field. In vivo, epicardial magnet effectively attracted MNBs/AdhVEGF complexes and resulted in strong therapeutic gene expression in the ischemic zone of the infarcted heart. When compared to other MI-treated groups, the MI-M+/AdhVEGF group significantly improved left ventricular function (p<0.05) assessed by pressure-volume loops after 4 weeks. Also the MI-M+/AdhVEGF group exhibited higher capillary and arteriole density and lower collagen deposition than other MI-treated groups (p<0.05). Magnetic targeting enhances transduction efficiency and improves heart function. This novel method to improve gene therapy outcomes in AMI treatment offers the potential into clinical applications.
  More...

 
//-->