BioSpace.com

Biotech and Pharmaceutical
News & Jobs
Search the Site
 
   
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Browse Biotech Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  US Device
Europe
Asia

DIVERSITY

INVESTOR
Market Summary
News
IPOs

PROFILES
Company Profiles

START UPS
Companies
Events

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Biotech Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Immunology - Neurological Disorders - Neuroscience - Surgery

Temporal Changes in Cell Marker Expression and Cellular Infiltration in a Controlled Cortical Impact Model in Adult Male C57BL/6 Mice
Published: Tuesday, July 24, 2012
Author: Xuemei Jin et al.

by Xuemei Jin, Hiroshi Ishii, Zhongbin Bai, Takahide Itokazu, Toshihide Yamashita

Background

Traumatic injury to the central nervous system (CNS) triggers a robust inflammatory response that leads to axonal damage and secondary degeneration of spared tissue. In contrast, some immune responses have neuroprotective effects. However, detailed information regarding the dynamics of immune responses after traumatic CNS injury is still unavailable.

Methods

In the present study, changes in the immune cells present in the injured brain, spleen, and cervical lymph nodes (CLNs), which are draining lymphatic organs from the CNS, were analyzed after controlled cortical impact (CCI) by flow cytometry and immunohistochemistry.

Results

The number of neutrophils and macrophages that infiltrated the injured brain immediately increased 1 d post-injury and declined rapidly thereafter. In the injured brain, resident microglia showed a bimodal increase during the first week and in the chronic phase (=3 weeks) after injury. Increase in the Iba-1+ microglia/macrophages was observed around the injured site. Morphologic analysis showed that Iba-1+ cells were round at 1 week, whereas those at 3 weeks were more ramified. Furthermore, CD86+/CD11b+ M1-like microglia increased at 4 weeks after CCI, whereas CD206+/CD11b+ M2-like microglia increased at 1 week. These results suggest that different subsets of microglia increased in the acute and chronic phases after CCI. Dendritic cells and T cells increased transiently within 1 week in the injured brain. In the CLNs and the spleen, T cells showed dynamic changes after CCI. In particular, the alteration in the number of T cells in the CLNs showed a similar pattern, with a 1-week delay, to that of microglia in the injured brain.

Conclusion

The data from this study provide useful information on the dynamics of immune cells in CNS injuries.

  More...

 

//-->