BioSpace.com

Biotech and Pharmaceutical
News & Jobs
Search the Site
 
   
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Browse Biotech Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  US Device
Europe
Asia

DIVERSITY

INVESTOR
Market Summary
News
IPOs

PROFILES
Company Profiles

START UPS
Companies
Events

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Biotech Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Mathematics - Mental Health - Physics - Physiology

Universality, Limits and Predictability of Gold-Medal Performances at the Olympic Games
Published: Thursday, July 12, 2012
Author: Filippo Radicchi

by Filippo Radicchi

Inspired by the Games held in ancient Greece, modern Olympics represent the world’s largest pageant of athletic skill and competitive spirit. Performances of athletes at the Olympic Games mirror, since 1896, human potentialities in sports, and thus provide an optimal source of information for studying the evolution of sport achievements and predicting the limits that athletes can reach. Unfortunately, the models introduced so far for the description of athlete performances at the Olympics are either sophisticated or unrealistic, and more importantly, do not provide a unified theory for sport performances. Here, we address this issue by showing that relative performance improvements of medal winners at the Olympics are normally distributed, implying that the evolution of performance values can be described in good approximation as an exponential approach to an a priori unknown limiting performance value. This law holds for all specialties in athletics–including running, jumping, and throwing–and swimming. We present a self-consistent method, based on normality hypothesis testing, able to predict limiting performance values in all specialties. We further quantify the most likely years in which athletes will breach challenging performance walls in running, jumping, throwing, and swimming events, as well as the probability that new world records will be established at the next edition of the Olympic Games.
  More...

 

//-->