BioSpace.com

Biotech and Pharmaceutical
News & Jobs
Search the Site
 
   
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Browse Biotech Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  US Device
Europe
Asia

DIVERSITY

INVESTOR
Market Summary
News
IPOs

PROFILES
Company Profiles

START UPS
Companies
Events

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Biotech Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Ophthalmology - Physiology

Snail Involves in the Transforming Growth Factor ß1-Mediated Epithelial-Mesenchymal Transition of Retinal Pigment Epithelial Cells
Published: Wednesday, August 10, 2011
Author: Hui Li et al.

by Hui Li, Hongwei Wang, Fang Wang, Qing Gu, Xun Xu

Background

The proliferation of retinal pigment epithelium (RPE) cells resulting from an epithelial-mesenchymal transition (EMT) plays a key role in proliferative vitreoretinopathy (PVR), which leads to complex retinal detachment and the loss of vision. Genes of Snail family encode the zinc finger transcription factors that have been reported to be essential in EMT during embryonic development and cancer metastasis. However, the function of Snail in RPE cells undergoing EMT is largely unknown.

Principal Findings

Transforming growth factor beta(TGF-ß)-1 resulted in EMT in human RPE cells (ARPE-19), which was characterized by the expected decrease in E-cadherin and Zona occludin-1(ZO-1) expression, and the increase in fibronectin and a-smooth muscle actin (a-SMA) expression, as well as the associated increase of Snail expression at both mRNA and protein levels. Furthermore, TGF-ß1 treatment caused a significant change in ARPE-19 cells morphology, with transition from a typical epithelial morphology to mesenchymal spindle-shaped. More interestingly, Snail silencing significantly attenuated TGF-ß1-induced EMT in ARPE-19 cells by decreasing the mesenchymal markers fibronectin and a-SMA and increasing the epithelial marker E-cadherin and ZO-1. Snail knockdown could effectively suppress ARPE-19 cell migration. Finally, Snail was activated in epiretinal membranes from PVR patients. Taken together, Snail plays very important roles in TGF-ß-1-induced EMT in human RPE cells and may contribute to the development of PVR.

Significance

Snail transcription factor plays a critical role in TGF-ß1-induced EMT in human RPE cells, which provides deep insight into the pathogenesis of human PVR disease. The specific inhibition of Snail may provide a new approach to treat and prevent PVR.

  More...

 

//-->