BioSpace.com

Biotech and Pharmaceutical
News & Jobs
Search the Site
 
   
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Browse Biotech Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  US Device
Europe
Asia

DIVERSITY

INVESTOR
Market Summary
News
IPOs

PROFILES
Company Profiles

START UPS
Companies
Events

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Biotech Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Biochemistry - Biophysics - Biotechnology - Hematology

Effects of Long and Short Carboxylated or Aminated Multiwalled Carbon Nanotubes on Blood Coagulation
Published: Tuesday, July 10, 2012
Author: Jie Meng et al.

by Jie Meng, Xuelian Cheng, Jian Liu, Weiqi Zhang, Xiaojin Li, Hua Kong, Haiyan Xu

In this work the effects of four different multiwalled carbon nanotubes (MWCNTs), including long carboxylated (L-COOH), short carboxylated (S-COOH), long aminated (L-NH2) and short aminated (S-NH2) ones, on the integrity of red blood cells, coagulation kinetics and activation of platelets were investigated with human whole blood. We found that the four MWCNTs induced different degrees of red blood cell damage as well as a mild level of platelet activation (10–25%). L-COOH and L-NH2 induced a higher level of platelet activation than S-COOH and S-NH2 respectively; meanwhile L-NH2 caused marked reductions in platelet viability. The presence of the four MWCNTs led to earlier fibrin formation, L-NH2 increased the clots hardness significantly, while L-COOH and S-NH2 made the clots become softer. It was concluded that the four MWCNTs affected blood coagulation process and the clots mechanical properties; they also altered the integrity of the red blood cells and the viability of the platelets, as well as induced platelets activation. The effects of MWCNTs depended on the size and chemistry of the nanotubes and the type of cells they contacted.
  More...

 

//-->