BioSpace.com

Biotech and Pharmaceutical
News & Jobs
Search the Site
 
   
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Browse Biotech Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  US Device
Europe
Asia

DIVERSITY

INVESTOR
Market Summary
News
IPOs

PROFILES
Company Profiles

START UPS
Companies
Events

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Biotech Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Chemical Biology

Homodimerization of the Death-Associated Protein Kinase Catalytic Domain: Development of a New Small Molecule Fluorescent Reporter
Published: Tuesday, November 30, 2010
Author: Michael Zimmermann et al.

by Michael Zimmermann, Cédric Atmanene, Qingyan Xu, Laetitia Fouillen, Alain Van Dorsselaer, Dominique Bonnet, Claire Marsol, Marcel Hibert, Sarah Sanglier-Cianferani, Claire Pigault, Laurie K. McNamara, D. Martin Watterson, Jacques Haiech, Marie-Claude Kilhoffer

Background

Death-Associated Protein Kinase (DAPK) is a member of the Ca2+/calmodulin regulated serine/threonine protein kinases. Its biological function has been associated with induced cell death, and in vivo use of selective small molecule inhibitors of DAPK catalytic activity has demonstrated that it is a potential therapeutic target for treatment of brain injuries and neurodegenerative diseases.

Methodology/Principal Findings

In the in vitro study presented here, we describe the homodimerization of DAPK catalytic domain and the crucial role played by its basic loop structure that is part of the molecular fingerprint of death protein kinases. Nanoelectrospray ionization mass spectrometry of DAPK catalytic domain and a basic loop mutant DAPK protein performed under a variety of conditions was used to detect the monomer-dimer interchange. A chemical biological approach was used to find a fluorescent probe that allowed us to follow the oligomerization state of the protein in solution.

Conclusions/Significance

The use of this combined biophysical and chemical biology approach facilitated the elucidation of a monomer-dimer equilibrium in which the basic loop plays a key role, as well as an apparent allosteric conformational change reported by the fluorescent probe that is independent of the basic loop structure.

  More...

 

//-->