BioSpace.com

Biotech and Pharmaceutical
News & Jobs
Search the Site
 
   
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Browse Biotech Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  US Device
Europe
Asia

DIVERSITY

INVESTOR
Market Summary
News
IPOs

PROFILES
Company Profiles

START UPS
Companies
Events

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Biotech Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Biochemistry - Neuroscience - Pharmacology

Differences in Rat Dorsal Striatal NMDA and AMPA Receptors following Acute and Repeated Cocaine-Induced Locomotor Activation
Published: Thursday, May 24, 2012
Author: Dorothy J. Yamamoto et al.

by Dorothy J. Yamamoto, Nancy R. Zahniser

Sprague-Dawley rats can be classified as low or high cocaine responders (LCRs or HCRs, respectively) based on their locomotor activity induced by an acute low dose of cocaine. Upon repeated cocaine exposure, LCRs display greater locomotor sensitization, reward, and reinforcement than HCRs. Altered glutamate receptor expression in the brain reward pathway has been linked to locomotor sensitization and addiction. To determine if such changes contribute to the differential development of locomotor sensitization, we examined protein levels of total, phosphorylated, and cell surface glutamate N-methyl D-aspartate (NMDA) and a-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors (Rs) following acute or repeated cocaine (10 mg/kg, i.p.) in LCRs, HCRs and saline controls. Three areas involved in the development and expression of locomotor sensitization were investigated: the ventral tegmental area (VTA), nucleus accumbens (NAc) and dorsal striatum (dSTR). Our results revealed differences only in the dSTR, where we found that after acute cocaine, GluN2BTyr-1472 phosphorylation was significantly greater in LCRs, compared to HCRs and controls. Additionally in dSTR, after repeated cocaine, we observed significant increases in total GluA1, phosphorylated GluA1Ser-845, and cell surface GluA1 in all cocaine-treated animals vs. controls. The acute cocaine-induced increases in NMDARs in dSTR of LCRs may help to explain the more ready development of locomotor sensitization and susceptibility to addiction-like behaviors in rats that initially exhibit little or no cocaine-induced activation, whereas the AMPAR increases after repeated cocaine may relate to recruitment of more dorsal striatal circuits and maintenance of the marked cocaine-induced locomotor activation observed in all of the rats.
  More...

 

//-->