PLoS By Category | Recent PLoS Articles

Biochemistry - Hematology - Molecular Biology


Genetic and Mechanistic Evaluation for the Mixed-Field Agglutination in B3 Blood Type with IVS3+5G>A ABO Gene Mutation
Published: Friday, May 18, 2012
Author: Ding-Ping Chen et al.

by Ding-Ping Chen, Ching-Ping Tseng, Wei-Ting Wang, Chien-Feng Sun

Background

The ABO blood type B3 is the most common B subtype in the Chinese population with a frequency of 1/900. Although IVS3+5G>A (rs55852701) mutation of B gene has been shown to associate with the development of B3 blood type, genetic and mechanistic evaluation for the unique mixed-field agglutination phenotype has not yet been completely addressed.

Methodology/Principal Findings

In this study, we analyzed 16 cases of confirmed B3 individuals and found that IVS3+5G>A attributes to all cases of B3. RT-PCR analyses revealed the presence of at least 7 types of aberrant B3 splicing transcripts with most of the transcripts causing early termination and producing non-functional protein during translation. The splicing transcript without exon 3 that was predicted to generate functional B3 glycosyltransferase lacking 19 amino acids at the N-terminal segment constituted only 0.9% of the splicing transcripts. Expression of the B3 cDNA with exon 3 deletion in the K562 erythroleukemia cells revealed that the B3 glycosyltransferase had only 40% of B1 activity in converting H antigen to B antigen. Notably, the typical mixed-field agglutination of B3-RBCs can be mimicked by adding anti-B antibody to the K562-B3 cells.

Conclusions/Significance

This study thereby demonstrates that both aberrant splicing of B transcripts and the reduced B3 glycosyltransferase activity contribute to weak B expression and the mixed-field agglutination of B3, adding to the complexity for the regulatory mechanisms of ABO gene expression.

  More...

 
//-->