PLoS By Category | Recent PLoS Articles

Biochemistry - Molecular Biology - Ophthalmology - Physiology

Validation of Endogenous Control Genes for Gene Expression Studies on Human Ocular Surface Epithelium
Published: Wednesday, August 03, 2011
Author: Bina Kulkarni et al.

by Bina Kulkarni, Imran Mohammed, Andrew Hopkinson, Harminder Singh Dua


To evaluate a panel of ten known endogenous control genes (ECG) with quantitative reverse transcription PCR (qPCR), for identification of stably expressed endogenous control genes in the ocular surface (OS) epithelial regions including cornea, limbus, limbal epithelial crypt and conjunctiva to normalise the quantitative reverse transcription PCR data of genes of interest expressed in above-mentioned regions.


The lasermicrodissected (LMD) OS epithelial regions of cryosectioned corneoscleral buttons from the cadaver eyes were processed for RNA extraction and cDNA synthesis to detect genes of interest with qPCR. Gene expression of 10 known ECG—glyceraldehyde-3-phosphate dehydrogenase (GAPDH), beta actin (ACTB), peptidylprolyl isomerase (PPIA), TATA-box binding protein (TBP1), hypoxanthine guanine phosphoribosyl transferase (HPRT1), beta glucuronidase (GUSB), Eucaryotic 18S ribosomal RNA (18S), phosphoglycerate kinase (PGK1), beta-2-microglobulin (B2M), ribosomal protein, large, P0 (RPLP0)—was measured in the OS epithelial regions by qPCR method and the data collected was further analysed using geNorm software.


The expression stability of ECGs in the OS epithelial regions in increasing order as determined with geNorm software is as follows: ACTB<18S Conclusion

This study has identified stably expressed ECGs on the OS epithelial regions for effective qPCR results in genes of interest. The results from this study are broadly applicable to quantitative reverse transcription PCR studies on human OS epithelium and provide evidence for the use of PPIA-RPLP0 ECGs pair in quantitative reverse transcription PCR across the OS epithelium.