PLoS By Category | Recent PLoS Articles

Molecular Biology - Respiratory Medicine

BMP-2 Up-Regulates PTEN Expression and Induces Apoptosis of Pulmonary Artery Smooth Muscle Cells under Hypoxia
Published: Tuesday, May 15, 2012
Author: Weifeng Pi et al.

by Weifeng Pi, Xuejun Guo, Liping Su, Weiguo Xu


To investigate the role of bone morphogenetic protein 2 (BMP-2) in regulation of phosphatase and tensin homologue deleted on chromosome ten (PTEN) and apoptosis of pulmonary artery smooth muscle cells (PASMCs) under hypoxia.


Normal human PASMCs were cultured in growth medium (GM) and treated with BMP-2 from 5–80 ng/ml under hypoxia (5% CO2+94% N2+1% O2) for 72 hours. Gene expression of PTEN, AKT-1 and AKT-2 were determined by quantitative RT-PCR (QRT-PCR). Protein expression levels of PTEN, AKT and phosph-AKT (pAKT) were determined. Apoptosis of PASMCs were determined by measuring activities of caspases-3, -8 and -9. siRNA-smad-4, bpV(HOpic) (PTEN inhibitor) and GW9662 (PPAR? antagonist) were used to determine the signalling pathways.


Proliferation of PASMCs showed dose dependence of BMP-2, the lowest proliferation rate was achieved at 60 ng/ml concentration under hypoxia (82.2±2.8%). BMP-2 increased PTEN gene expression level, while AKT-1 and AKT-2 did not change. Consistently, the PTEN protein expression also showed dose dependence of BMP-2. AKT activity significantly reduced in BMP-2 treated PASMCs. Increased activities of caspase-3, -8 and -9 of PASMCs were found after cultured with BMP-2. PTEN expression remained unchanged when Smad-4 expression was inhibited by siRNA-Smad-4. bpV(HOpic) and GW9662 (PPAR? inhibitor) inhibited PTEN protein expression and recovered PASMCs proliferation rate.


BMP-2 increased PTEN expression under hypoxia in a dose dependent pattern. BMP-2 reduced AKT activity and increased caspase activity of PASMCs under hypoxia. The increased PTEN expression may be mediated through PPAR? signalling pathway, instead of BMP/Smad signalling pathway.