PLoS By Category | Recent PLoS Articles

Critical Care and Emergency Medicine - Immunology - Surgery

Activation of Regulatory T Cells during Inflammatory Response Is Not an Exclusive Property of Stem Cells
Published: Monday, April 23, 2012
Author: Jan-Hendrik Gosemann et al.

by Jan-Hendrik Gosemann, Joachim F. Kuebler, Michela Pozzobon, Claudia Neunaber, Julia H. K. Hensel, Marco Ghionzoli, Paolo de Coppi, Benno M. Ure, Gesine Holze


Sepsis and systemic-inflammatory-response-syndrome (SIRS) remain major causes for fatalities on intensive care units despite up-to-date therapy. It is well accepted that stem cells have immunomodulatory properties during inflammation and sepsis, including the activation of regulatory T cells and the attenuation of distant organ damage. Evidence from recent work suggests that these properties may not be exclusively attributed to stem cells. This study was designed to evaluate the immunomodulatory potency of cellular treatment during acute inflammation in a model of sublethal endotoxemia and to investigate the hypothesis that immunomodulations by cellular treatment during inflammatory response is not stem cell specific.

Methodology/Principal Findings

Endotoxemia was induced via intra-peritoneal injection of lipopolysaccharide (LPS) in wild type mice (C3H/HeN). Mice were treated with either vital or homogenized amniotic fluid stem cells (AFS) and sacrificed for specimen collection 24 h after LPS injection. Endpoints were plasma cytokine levels (BD™ Cytometric Bead Arrays), T cell subpopulations (flow-cytometry) and pulmonary neutrophil influx (immunohistochemistry). To define stem cell specific effects, treatment with either vital or homogenized human-embryonic-kidney-cells (HEK) was investigated in a second subset of experiments. Mice treated with homogenized AFS cells showed significantly increased percentages of regulatory T cells and Interleukin-2 as well as decreased amounts of pulmonary neutrophils compared to saline-treated controls. These results could be reproduced in mice treated with vital HEK cells. No further differences were observed between plasma cytokine levels of endotoxemic mice.


The results revealed that both AFS and HEK cells modulate cellular immune response and distant organ damage during sublethal endotoxemia. The observed effects support the hypothesis, that immunomodulations are not exclusive attributes of stem cells.