BioSpace.com

Biotech and Pharmaceutical
News & Jobs
Search the Site
 
   
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Browse Biotech Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  US Device
Europe
Asia

DIVERSITY

INVESTOR
Market Summary
News
IPOs

PROFILES
Company Profiles

START UPS
Companies
Events

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Biotech Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Science Policy

Impact of Reporting Bias in Network Meta-Analysis of Antidepressant Placebo-Controlled Trials
Published: Friday, April 20, 2012
Author: Ludovic Trinquart et al.

by Ludovic Trinquart, Adeline Abbé, Philippe Ravaud

Background

Indirect comparisons of competing treatments by network meta-analysis (NMA) are increasingly in use. Reporting bias has received little attention in this context. We aimed to assess the impact of such bias in NMAs.

Methods

We used data from 74 FDA-registered placebo-controlled trials of 12 antidepressants and their 51 matching publications. For each dataset, NMA was used to estimate the effect sizes for 66 possible pair-wise comparisons of these drugs, the probabilities of being the best drug and ranking the drugs. To assess the impact of reporting bias, we compared the NMA results for the 51 published trials and those for the 74 FDA-registered trials. To assess how reporting bias affecting only one drug may affect the ranking of all drugs, we performed 12 different NMAs for hypothetical analysis. For each of these NMAs, we used published data for one drug and FDA data for the 11 other drugs.

Findings

Pair-wise effect sizes for drugs derived from the NMA of published data and those from the NMA of FDA data differed in absolute value by at least 100% in 30 of 66 pair-wise comparisons (45%). Depending on the dataset used, the top 3 agents differed, in composition and order. When reporting bias hypothetically affected only one drug, the affected drug ranked first in 5 of the 12 NMAs but second (n?=?2), fourth (n?=?1) or eighth (n?=?2) in the NMA of the complete FDA network.

Conclusions

In this particular network, reporting bias biased NMA-based estimates of treatments efficacy and modified ranking. The reporting bias effect in NMAs may differ from that in classical meta-analyses in that reporting bias affecting only one drug may affect the ranking of all drugs.

  More...

 

//-->