BioSpace.com

Biotech and Pharmaceutical
News & Jobs
Search the Site
 
   
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Browse Biotech Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  US Device
Europe
Asia

DIVERSITY

INVESTOR
Market Summary
News
IPOs

PROFILES
Company Profiles

START UPS
Companies
Events

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Biotech Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Biochemistry - Biophysics - Biotechnology - Ophthalmology - Physiology

Cochlin, Intraocular Pressure Regulation and Mechanosensing
Published: Wednesday, April 04, 2012
Author: Manik Goel et al.

by Manik Goel, Adam E. Sienkiewicz, Renata Picciani, Jianhua Wang, Richard K. Lee, Sanjoy K. Bhattacharya

Fluid shear modulates many biological properties. How shear mechanosensing occurs in the extracellular matrix (ECM) and is transduced into cytoskeletal change remains unknown. Cochlin is an ECM protein of unknown function. Our investigation using a comprehensive spectrum of cutting-edge techniques has resulted in following major findings: (1) over-expression and down-regulation of cochlin increase and decrease intraocular pressure (IOP), respectively. The overexpression was achieved in DBA/2J-Gpnmb+/SjJ using lentiviral vectors, down-regulation was achieved in glaucomatous DBA/2J mice using targeted disruption (cochlin-null mice) and also using lentiviral vector mediated shRNA against cochlin coding region; (2) reintroduction of cochlin in cochlin-null mice increases IOP; (3) injection of exogenous cochlin also increased IOP; (4) increasing perfusion rates increased cochlin multimerization, which reduced the rate of cochlin proteolysis by trypsin and proteinase K; The cochlin multimerization in response to shear stress suggests its potential mechanosensing. Taken together with previous studies, we show cochlin is involved in regulation of intraocular pressure in DBA/2J potentially through mechanosensing of the shear stress.
  More...

 

//-->