BioSpace.com

Biotech and Pharmaceutical
News & Jobs
Search the Site
 
   
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Browse Biotech Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  US Device
Europe
Asia

DIVERSITY

INVESTOR
Market Summary
News
IPOs

PROFILES
Company Profiles

START UPS
Companies
Events

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Biotech Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Biotechnology - Computer Science - Otolaryngology

A Method for Removal of Low Frequency Components Associated with Head Movements from Dual-Axis Swallowing Accelerometry Signals
Published: Thursday, March 29, 2012
Author: Ervin Sejdic et al.

by Ervin Sejdic, Catriona M. Steele, Tom Chau

Head movements can greatly affect swallowing accelerometry signals. In this paper, we implement a spline-based approach to remove low frequency components associated with these motions. Our approach was tested using both synthetic and real data. Synthetic signals were used to perform a comparative analysis of the spline-based approach with other similar techniques. Real data, obtained data from 408 healthy participants during various swallowing tasks, was used to analyze the processing accuracy with and without the spline-based head motions removal scheme. Specifically, we analyzed the segmentation accuracy and the effects of the scheme on statistical properties of these signals, as measured by the scaling analysis. The results of the numerical analysis showed that the spline-based technique achieves a superior performance in comparison to other existing techniques. Additionally, when applied to real data, we improved the accuracy of the segmentation process by achieving a 27% drop in the number of false negatives and a 30% drop in the number of false positives. Furthermore, the anthropometric trends in the statistical properties of these signals remained unaltered as shown by the scaling analysis, but the strength of statistical persistence was significantly reduced. These results clearly indicate that any future medical devices based on swallowing accelerometry signals should remove head motions from these signals in order to increase segmentation accuracy.
  More...

 

//-->