PLoS By Category | Recent PLoS Articles

Hematology - Public Health and Epidemiology


Identification and Functional Analysis of a Novel von Willebrand Factor Mutation in a Family with Type 2A von Willebrand Disease
Published: Tuesday, March 27, 2012
Author: Jing Dong et al.

by Jing Dong, Xiaojuan Zhao, Sensen Shi, Zhenni Ma, Meng Liu, Qingyu Wu, Changgeng Ruan, Ningzheng Dong

von Willebrand factor (VWF) is essential for normal hemostasis. VWF gene mutations cause the hemorrhagic von Willebrand disease (VWD). In this study, a 9-year-old boy was diagnosed as type 2A VWD, based on a history of abnormal bleeding, low plasma VWF antigen and activity, low plasma factor VIII activity, and lack of plasma high-molecular-weight (HMW) VWF multimers. Sequencing analysis detected a 6-bp deletion in exon 28 of his VWF gene, which created a mutant lacking D1529V1530 residues in VWF A2 domain. This mutation also existed in his family members with abnormal bleedings but not in >60 normal controls. In transfected HEK293 cells, recombinant VWF ?D1529V1530 protein had markedly reduced levels in the conditioned medium (42±4% of wild-type (WT) VWF, p<0.01). The mutant VWF in the medium had less HMW multimers. In contrast, the intracellular levels of the mutant VWF in the transfected cells were significantly higher than that of WT (174±29%, p<0.05), indicating intracellular retention of the mutant VWF. In co-transfection experiments, the mutant reduced WT VWF secretion from the cells. By immunofluorescence staining, the retention of the mutant VWF was identified within the endoplasmic reticulum (ER). Together, we identified a unique VWF mutation responsible for the bleeding phenotype in a patient family with type 2A VWD. The mutation impaired VWF trafficking through the ER, thereby preventing VWF secretion from the cells. Our results illustrate the diversity of VWF gene mutations, which contributes to the wide spectrum of VWD.
  More...

 
//-->