BioSpace.com

Biotech and Pharmaceutical
News & Jobs
Search the Site
 
   
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Browse Biotech Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  US Device
Europe
Asia

DIVERSITY

INVESTOR
Market Summary
News
IPOs

PROFILES
Company Profiles

START UPS
Companies
Events

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Biotech Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Gastroenterology and Hepatology - Surgery

Pretransplant Prediction of Posttransplant Survival for Liver Recipients with Benign End-Stage Liver Diseases: A Nonlinear Model
Published: Thursday, March 01, 2012
Author: Ming Zhang et al.

by Ming Zhang, Fei Yin, Bo Chen, You Ping Li, Lu Nan Yan, Tian Fu Wen, Bo Li

Background

The scarcity of grafts available necessitates a system that considers expected posttransplant survival, in addition to pretransplant mortality as estimated by the MELD. So far, however, conventional linear techniques have failed to achieve sufficient accuracy in posttransplant outcome prediction. In this study, we aim to develop a pretransplant predictive model for liver recipients' survival with benign end-stage liver diseases (BESLD) by a nonlinear method based on pretransplant characteristics, and compare its performance with a BESLD-specific prognostic model (MELD) and a general-illness severity model (the sequential organ failure assessment score, or SOFA score).

Methodology/Principal Findings

With retrospectively collected data on 360 recipients receiving deceased-donor transplantation for BESLD between February 1999 and August 2009 in the west China hospital of Sichuan university, we developed a multi-layer perceptron (MLP) network to predict one-year and two-year survival probability after transplantation. The performances of the MLP, SOFA, and MELD were assessed by measuring both calibration ability and discriminative power, with Hosmer-Lemeshow test and receiver operating characteristic analysis, respectively. By the forward stepwise selection, donor age and BMI; serum concentration of HB, Crea, ALB, TB, ALT, INR, Na+; presence of pretransplant diabetes; dialysis prior to transplantation, and microbiologically proven sepsis were identified to be the optimal input features. The MLP, employing 18 input neurons and 12 hidden neurons, yielded high predictive accuracy, with c-statistic of 0.91 (P<0.001) in one-year and 0.88 (P<0.001) in two-year prediction. The performances of SOFA and MELD were fairly poor in prognostic assessment, with c-statistics of 0.70 and 0.66, respectively, in one-year prediction, and 0.67 and 0.65 in two-year prediction.

Conclusions/Significance

The posttransplant prognosis is a multidimensional nonlinear problem, and the MLP can achieve significantly high accuracy than SOFA and MELD scores in posttransplant survival prediction. The pattern recognition methodologies like MLP hold promise for solving posttransplant outcome prediction.

  More...

 

//-->