BioSpace.com

Biotech and Pharmaceutical
News & Jobs
Search the Site
 
   
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Browse Biotech Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  US Device
Europe
Asia

DIVERSITY

INVESTOR
Market Summary
News
IPOs

PROFILES
Company Profiles

START UPS
Companies
Events

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Biotech Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Computer Science - Mathematics

Assessment of Genotype Imputation Performance Using 1000 Genomes in African American Studies
Published: Friday, November 30, 2012
Author: Dana B. Hancock et al.

by Dana B. Hancock, Joshua L. Levy, Nathan C. Gaddis, Laura J. Bierut, Nancy L. Saccone, Grier P. Page, Eric O. Johnson

Genotype imputation, used in genome-wide association studies to expand coverage of single nucleotide polymorphisms (SNPs), has performed poorly in African Americans compared to less admixed populations. Overall, imputation has typically relied on HapMap reference haplotype panels from Africans (YRI), European Americans (CEU), and Asians (CHB/JPT). The 1000 Genomes project offers a wider range of reference populations, such as African Americans (ASW), but their imputation performance has had limited evaluation. Using 595 African Americans genotyped on Illumina’s HumanHap550v3 BeadChip, we compared imputation results from four software programs (IMPUTE2, BEAGLE, MaCH, and MaCH-Admix) and three reference panels consisting of different combinations of 1000 Genomes populations (February 2012 release): (1) 3 specifically selected populations (YRI, CEU, and ASW); (2) 8 populations of diverse African (AFR) or European (AFR) descent; and (3) all 14 available populations (ALL). Based on chromosome 22, we calculated three performance metrics: (1) concordance (percentage of masked genotyped SNPs with imputed and true genotype agreement); (2) imputation quality score (IQS; concordance adjusted for chance agreement, which is particularly informative for low minor allele frequency [MAF] SNPs); and (3) average r2hat (estimated correlation between the imputed and true genotypes, for all imputed SNPs). Across the reference panels, IMPUTE2 and MaCH had the highest concordance (91%–93%), but IMPUTE2 had the highest IQS (81%–83%) and average r2hat (0.68 using YRI+ASW+CEU, 0.62 using AFR+EUR, and 0.55 using ALL). Imputation quality for most programs was reduced by the addition of more distantly related reference populations, due entirely to the introduction of low frequency SNPs (MAF=2%) that are monomorphic in the more closely related panels. While imputation was optimized by using IMPUTE2 with reference to the ALL panel (average r2hat?=?0.86 for SNPs with MAF>2%), use of the ALL panel for African American studies requires careful interpretation of the population specificity and imputation quality of low frequency SNPs.
  More...

 

//-->