BioSpace.com

Biotech and Pharmaceutical
News & Jobs
Search the Site
 
   
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Browse Biotech Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  US Device
Europe
Asia

DIVERSITY

INVESTOR
Market Summary
News
IPOs

PROFILES
Company Profiles

START UPS
Companies
Events

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Biotech Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Neurological Disorders - Neuroscience - Physiology

APP Knockout Mice Experience Acute Mortality as the Result of Ischemia
Published: Thursday, August 09, 2012
Author: Maya A. Koike et al.

by Maya A. Koike, Alexander J. Lin, Jonathan Pham, Elaine Nguyen, James J. Yeh, Rombod Rahimian, Bruce J. Tromberg, Bernard Choi, Kim N. Green, Frank M. LaFerla

The incidence of Alzheimer’s disease increases in people who have had an ischemic episode. Furthermore, APP expression is increased following ischemic or hypoxic conditions, as is the production of the Aß peptide. To address the question of why APP and Aß are increased in hypoxic and ischemic conditions we induced an ischemic episode in APP knockout mice (APP-/-) and BACE1 knockout mice (BACE-/-). We find that both APP-/- and BACE-/- mice have a dramatically increased risk of mortality as a result of cerebral ischemia. Furthermore, APP knockout mice have reduced cerebral blood flow in response to hypoxia, while wild-type mice maintain or increase cerebral blood flow to the same conditions. The transcription factor, serum response factor (SRF), and calcium-binding molecule, calsequestrin, both involved in vascular regulation, are significantly altered in the brains of APP-/- mice compared to wild type controls. These results show that APP regulates cerebral blood flow in response to hypoxia, and that it, and its cleavage fragments, are crucial for rapid adaptation to ischemic conditions.
  More...

 

//-->