BioSpace.com

Biotech and Pharmaceutical
News & Jobs
Search the Site
 
   
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Browse Biotech Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  US Device
Europe
Asia

DIVERSITY

INVESTOR
Market Summary
News
IPOs

PROFILES
Company Profiles

START UPS
Companies
Events

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Biotech Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Biochemistry

Knocking Out ACR2 Does Not Affect Arsenic Redox Status in Arabidopsis thaliana: Implications for As Detoxification and Accumulation in Plants
Published: Monday, August 06, 2012
Author: Wenju Liu et al.

by Wenju Liu, Henk Schat, Mathijs Bliek, Yi Chen, Steve P. McGrath, Graham George, David E. Salt, Fang-Jie Zhao

Many plant species are able to reduce arsenate to arsenite efficiently, which is an important step allowing detoxification of As through either efflux of arsenite or complexation with thiol compounds. It has been suggested that this reduction is catalyzed by ACR2, a plant homologue of the yeast arsenate reductase ScACR2. Silencing of AtACR2 was reported to result in As hyperaccumulation in the shoots of Arabidopsis thaliana. However, no information of the in vivo As speciation has been reported. Here, we investigated the effect of AtACR2 knockout or overexpression on As speciation, arsenite efflux from roots and As accumulation in shoots. T-DNA insertion lines, overexpression lines and wild-type (WT) plants were exposed to different concentrations of arsenate for different periods, and As speciation in plants and arsenite efflux were determined using HPLC-ICP-MS. There were no significant differences in As speciation between different lines, with arsenite accounting for >90% of the total extractable As in both roots and shoots. Arsenite efflux to the external medium represented on average 77% of the arsenate taken up during 6 h exposure, but there were no significant differences between WT and mutants or overexpression lines. Accumulation of As in the shoots was also unaffected by AtACR2 knockout or overexpression. Additionally, after exposure to arsenate, the yeast (Saccharomyces cerevisiae) strain with ScACR2 deleted showed similar As speciation as the WT with arsenite-thiol complexes being the predominant species. Our results suggest the existence of multiple pathways of arsenate reduction in plants and yeast.
  More...

 

//-->