BioSpace.com

Biotech and Pharmaceutical
News & Jobs
Search the Site
 
   
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Browse Biotech Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  US Device
Europe
Asia

DIVERSITY

INVESTOR
Market Summary
News
IPOs

PROFILES
Company Profiles

START UPS
Companies
Events

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Biotech Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

 News | News By Subject | News by Disease News By Date | Search News
eNewsletter Signup
Miles
Km80.5

   

SynCardia Systems, Inc. Advisory Board Experts Awarded $7.5 Million Grant from National Institutes of Health (NIH) to Optimize Designs of Cardiovascular Devices


11/4/2010 7:13:31 AM

TUCSON, Ariz.--(BUSINESS WIRE)-- On Nov. 4, SynCardia Systems, Inc. (www.syncardia.com) announced that three of its Science Advisory Board experts have been awarded a five-year, $7.5 million grant from the National Institutes of Health (NIH) titled “Optimizing Cardiovascular Device Thromboresistance for Eliminating Anticoagulants.”

Danny Bluestein (photo), PhD, Principal Investigator and Professor of Biomedical Engineering at Stony Brook University, in collaboration with Co-Investigators Professor Shmuel Einav of the Stony Brook College of Engineering and Applied Science, and Marvin J. Slepian, M.D., Professor of Medicine (Cardiology and Biomedical Engineering) at the University of Arizona, will use the Phase II Quantum Grant, provided by the National Institute of Biomedical Imaging and Engineering (NIBIB), a division of the NIH, to optimize the design of cardiovascular devices.

“During Phase I, we developed a Device Thrombogenicity Emulator (DTE) that measures the potential for blood clotting in cardiovascular devices by mimicking the conditions in the device, based on sophisticated numerical simulations,” said Dr. Bluestein. “During Phase II, we will use the DTE to tweak the geometry of the devices to optimize the design and minimize or eliminate ‘hot spot’ trajectories where clots can form. The ultimate goal is to eliminate the need for anticoagulation in patients supported by these devices.”

Dr. Bluestein is working with several companies to test and optimize the designs of various cardiovascular devices including prosthetic heart valves, left ventricular assist devices (LVADs), biventricular assist devices (BiVADs) and the SynCardia temporary Total Artificial Heart.

“This methodology may lead to enhanced devices that demonstrate a lower likelihood of clot formation, bleeding and stroke,” said Dr. Slepian. “Ultimately, we envision that our methodology has the potential for advancing testing for cardiovascular devices that may be of use to the industry and the FDA.”

The design optimization process includes:

1. Tweaking the geometry of the original device design and conducting numerical simulations in the new design for studying “hot spot” blood flow trajectories that may activate platelets.

2. Programming the new design with these flow conditions into the DTE and measuring the resultant platelet activity to see if it has been reduced.

3. Iterating the process and freezing the new design once satisfactory results (device optimization) have been achieved.

4. Fabricating the prototype.

5. Testing the optimized design in animal and human studies.

Collaborators on Dr. Bluestein’s project include Dr. Slepian and the Sarver Heart Center at the University of Arizona, Stony Brook University collaborators and four industrial partners: SynCardia Systems, Inc., MicroMed Cardiovascular, Innovia LLC and Medtronic-ATS Medical Inc. Each group will receive a sub-award of the grant for their contributions to the project.

About SynCardia Systems, Inc.

SynCardia Systems, Inc. is the Tucson-based manufacturer of the world’s only FDA, Health Canada and CE approved Total Artificial Heart: the SynCardia temporary Total Artificial Heart. There have been more than 850 implants of the Total Artificial Heart, accounting for more than 200 patient years of life on the device.

Originally used as a permanent replacement heart, the Total Artificial Heart is currently approved as a bridge to human heart transplant for people dying from end-stage biventricular failure. The Total Artificial Heart is the only device that provides immediate, safe blood flow of up to 9.5 L/min through both ventricles.


Read at BioSpace.com

   

ADD TO DEL.ICIO.US    ADD TO DIGG    ADD TO FURL    ADD TO STUMBLEUPON    ADD TO TECHNORATI FAVORITES