Scienion AG Release: New Tool Allows Scientists To Visualize "Nanoscale" Processes

Berlin, Germany, and San Diego, USA, MAY 04, 2016: SCIENION AG, a leading provider of ultra-low volume precision liquid handling systems, and University of California San Diego, today announced that chemists at UC San Diego and automation experts at SCIENION have developed a new tool that allows scientists for the first time to see, at the scale of five billionths of a meter, “nanoscale” mixing processes occurring in liquids.

“Being able to look at nanoscale chemical gradients and reactions as they take place is just such a fundamental tool in biology, chemistry and all of material science,” said Nathan Gianneschi, a professor of chemistry and biochemistry who headed the team that detailed the development in a paper in this week’s issue of the journal Microscopy and Microanalysis. “With this new tool, we’ll be able to look at the kinetics and dynamics of chemical interactions that we’ve never been able to see before.”

Scientists have long relied on Transmission Electron Microscopy, or TEM, to see structures at the nanoscale. But that technique can take only static images and the subjects must be dried, or frozen and mounted within a vacuum chamber in order to be seen. As a result, researchers have been unable to view living processes or chemical reactions at the nanoscale, such as the growth and contraction within living cells of tiny fibers or nanoscale protrusions, essential in cell movement and division, or the changes caused by a chemical reaction in a liquid.

“As chemists, we could only really analyze the end products or bulk solution changes, or image at low resolution because we could never see events directly occur at the nanoscale,” said Gianneschi.

Recent developments in Liquid Cell TEM, or LCTEM, have allowed scientists to finally take videos of nanoscale objects in liquids. But that technique has been limited by the inability to control the mixing of solutions, a requirement when trying to view and analyze the impact of a drug on a living cell or the reaction of two chemicals.

Joseph Patterson, a postdoctoral researcher in the Gianneschi laboratory, working with SCIENION researchers both in the US and in Germany and Pacific Northwest National Laboratory, has taken a big step to resolving that problem by developing a technique as well as a tool that allows scientists to deposit tiny amounts of liquid—about 50 trillionths of a liter—within the viewing area of the LCTEM microscope

“With this technique, we can view multiple components mixed together at the nanoscale within liquids, so, for example, one could look at biological materials and perhaps see how they respond to a drug,” said Gianneschi. “That was never possible before.”

“The benefits to basic research are huge,” he added. “We will now be able to directly see the growth at the nanoscale of all kinds of things, like natural fibers or microtubules. There’s a lot of interest on the part of researchers in understanding how the surfaces of nanoparticles affect chemical reactions or how nanoscale defects on the surfaces of materials develop. We can finally look at the interfaces on nanostructures so that we can optimize the development of new kinds of catalysts, paints and suspensions.”

The study was supported by grants from the U.S. Air Force Office of Scientific Research and the U.S. Army Research Office.

About UC San Diego

The University of California San Diego is a student-centered, research-focused, service-oriented public institution that provides opportunity for all. Recognized as one of the top 15 research universities worldwide, a culture of collaboration sparks discoveries that advance society and drive economic impact. UC San Diego will transform California and a diverse global society by educating, by generating and disseminating knowledge and creative works, and by engaging in public service.

About SCIENION

SCIENION offers complete solutions for precise liquid dispensing applications enabling high throughput production of multiparameter assays in diagnostics, and life and material sciences. Addressing the dynamically increasing needs for miniaturization and multiplex analyses, SCIENION offers a unique technology portfolio that has been continuously expanded for over 15 years. SCIENION provides flexible solutions for research and development, wherein solutions for production purposes are customized. Systems and software are characterized by their versatility, precision and robustness. The company is a renowned specialist for ultra-low volume liquid handling, particularly for the handling of precious and sensitive compounds of biological or chemical origin. SCIENION’s dispensers allow for contact-free and precise drop spotting in the pico- to micro-liter range and are optimally suited for microarray based analytics – such as for tests with DNA, oligonucleotides, peptides, proteins, antibodies, glycans or for dispensing cells onto various substrates. The company operates from two sites in Germany, Dortmund and Berlin, and has a subsidiary in New Jersey, USA.

Back to news