News | News By Subject | News by Disease News By Date | Search News
Get Our FREE
Industry eNewsletter

Precision StemCell's Neural Reprogrammed Stem Cell Therapy Yields Better-Than-Expected Results for ALS Patients

12/4/2012 9:47:16 AM

GULF SHORES, Ala., Dec. 4, 2012 /PRNewswire/ -- More than 75 percent of amyotrophic lateral sclerosis (ALS) patients who received neural reprogrammed stem cell therapy have shown a positive response to the procedure. The groundbreaking technique was introduced to the United States this year by Precision StemCell (, an outpatient imaging and image-guided treatment facility located in Gulf Shores, Ala.

The procedure is performed by Dr. Jason R. Williams, a board-certified radiologist with extensive training in image-guided procedures. Under his care, 14 out of 18 patients diagnosed with ALS, also known as Lou Gehrig's disease, have shown signs of recovery.

"The improvements are mild, with patients reporting improved movement, breathing and speech, but we still have a long way to go," Dr. Williams stated. "Only time will tell how this therapy will affect the patients' long-term prognosis."

In Precision StemCell's neural reprogrammed stem cell therapy, fat-derived stem cells are injected into the spine of the patient. Dr. Williams uses a drug called selegeline, which has been shown to be a pre-inducer of adipose-derived stem cells into neural-like cells. Dr. Williams contends that the therapy is probably one of the largest advances seen in ALS therapy. "Before we started this therapy, I would have been happy just to see the progression of the disease halted, but to see some actual improvement, that was just shocking," he said

The first patient treated with the technique was Frank Orgel who continues to see improvement since his first treatment seven months ago. Eight years ago, Orgel's quality of life had declined to the point that he could not move his left arm or leg, walk or even stand on his own. The therapy has allowed Orgel to stand without assistance, and he continues to work with a physical therapist to regain the ability to walk. Another patient, Dexter Johnson, previously walked with a cane. After the treatment, Johnson has been able to walk without his cane for the majority of the time and he has been able to walk at a much faster pace.

The Precision StemCell center focuses on advanced imaging techniques, which include a 3T Open MRI, a low-dose 64-Slice CT Scanner, ultrasound and fluoroscopy, also known as real-time x-ray. The center is headed by Dr. Williams, who specializes in image-guided procedures, had already been performing magnetic resonance imaging (MRI), computed tomography (CT), ultrasound and fluoroscopy-guided stem cell injections for joint and orthopedic conditions.

In addition to their current work on advanced stem cell harvesting and processing with image-guided stem cell injections, Precision StemCell staff are planning to conduct further research so as to develop even more advanced techniques such as adding gene therapy to the current neural reprogramming platform. "Our therapy techniques not only hold promise for ALS patients, but also for people with other neural-related conditions such as Parkinson's and spinal cord injuries," said Dr. Williams. "There are several candidate genes that we plan to add to the adipose-derived stem cells and study in the mouse model. Though we are happy with our initial progress, our goal is to develop an effective cure."

About Precision StemCell

Located in Gulf Shores, Alabama, Precision StemCell conducts stem cell procedures using advanced imaging techniques, which include an Open 3T MRI, a low-dose 64-Slice CT scanner, ultrasound, and real time x-ray (fluoroscopy). Headed by Jason Williams, MD, a board-certified radiologist with extensive training in image-guided procedures, the facility performs advanced stem cell harvesting and processing with image-guided stem cell injections.


Angie Holder
Precision StemCell

This press release was issued through eReleases® Press Release Distribution. For more information, visit

SOURCE Precision StemCell

Read at

comments powered by Disqus