NeuroLife Reaches New Milestone

Nature’s Scientific Reports paper reports first demonstration of graded control of muscle contraction in a paralyzed limb

COLUMBUS, Ohio--(BUSINESS WIRE)--The newest achievement of NeuroLife takes science a step closer to realistically fixing paralysis.

“Ian is also able to perform dynamic movements with grasping and manipulating objects of different sizes and shapes with gradations in the force of his grip. This study demonstrates the significant potential and capabilities of brain computer interface technology to improve function and help patients with disabilities.”

A collaborative team of scientists and doctors from Battelle and the Ohio State University Wexner Medical Center have published a peer-reviewed scientific paper this week in Scientific Reports, a Nature publication where they describe experiments that show a quadriplegic study participant smoothly controlling movement through a continuum of states and generating precise levels of force using a brain-computer interface.

For a system such as NeuroLife to be practical for everyday use, those who need it must have smooth control of muscle movements and force delivery. For instance, when picking up a paper cup, the user needs to exert enough force to lift the cup but not so much that they crush it. For natural fine motor control of paralyzed limbs, there must be a full range of willful, graded muscle control.

“Enabling users to precisely grade their muscle contractions expands the possible uses of the NeuroLife technology and opens the door for handling delicate objects,” said David Friedenberg, lead author of the paper and head of the Battelle’s NeuroLife Algorithms team.

Until now, the Battelle/OSU team has demonstrated that the NeuroLife system can produce complex functional movements driven by the thoughts of the study’s first participant, Ian Burkhart. Though he can do a variety of tasks, they’ve been a fixed number of discrete movements—with a binary “off or on, black or white” amount of force.

The 27-year-old Dublin, Ohio native was paralyzed in a diving accident in 2010 that resulted in quadriplegia and who volunteered to participate in the study three years later. NeuroLife was invented at Battelle and physicians and neuroscientists from Ohio State recruited Burkhart and sponsor the clinical study. Ohio State’s Dr. Ali Rezai implanted a tiny chip known as a Utah Array, manufactured by Blackrock Microsystems, into the left motor cortex of Burkhart’s brain. It serves as a listening device that captures neural activity in the part of Burkhart’s brain that governs hand movements.

In June of 2014, Burkhart first demonstrated the success of the neural bypass technology when he was able to open and close his formerly paralyzed hand by thinking about it. The Utah Array recorded neural impulses with a computer that decoded and recoded them and then to a sleeve around Burkhart’s forearm that created voluntary and functional control through electrical stimulation.

Since then, Burkhart has moved on to be able to perform many functional tasks such as swiping a credit card and playing video games. But he hasn’t been able to modulate the amount of force exerted by his muscles. Now, he and the NeuroLife team are proving that the next step toward functional control is achievable.

“Over that past three years, Ian has dramatically improved from initial rough movements of simple opening and closing of his hands, to much more fluid, sophisticated and precise movements of individual fingers,” said Dr. Rezai. “Ian is also able to perform dynamic movements with grasping and manipulating objects of different sizes and shapes with gradations in the force of his grip. This study demonstrates the significant potential and capabilities of brain computer interface technology to improve function and help patients with disabilities.”

Authors of this study include Battelle’s David Friedenberg, Gaurav Sharma, Michael Schwemmer, Andrew Landgraf, Nicholas Annetta, Mingming Zhang and Herb Bresler; Marcia Bockbrader, Ali Rezai and Jerry Mysiw from Ohio State and Chad Bouton from the Feinstein Institute.

About Battelle

Every day, the people of Battelle apply science and technology to solving what matters most. At major technology centers and national laboratories around the world, Battelle conducts research and development, designs and manufactures products, and delivers critical services for government and commercial customers. Headquartered in Columbus, Ohio since its founding in 1929, Battelle serves the national security, health and life sciences, energy and environmental industries. For more information, visit www.battelle.org.

Media Contacts

For more information contact T.R. Massey at (614) 424-5544 or at masseytr@battelle.org or Eileen Scahill (614) 293-3737 or at Eileen.Scahill@osumc.edu.

Contacts

Battelle
T.R. Massey, 614-424-5544
masseytr@battelle.org
or
Ohio State University Wexner Medical Center
Eileen Scahill, 614-293-3737
Eileen.Scahill@osumc.edu

Back to news