News | News By Subject | News by Disease News By Date | Search News
Get Our FREE
Industry eNewsletter
email:    
   

National Institutes of Health (NIH) Researcher Find Gene Variant Linked to Aortic Valve Disease


2/8/2013 7:33:13 AM

A newly identified genetic variant doubles the risk of calcium buildup in the heart's aortic valve. Calcium buildup is the most common cause of aortic stenosis, a narrowing of the aortic valve that can lead to heart failure, stroke, and sudden cardiac death.

An international genomics team called CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) found the variant in the gene for lipoprotein(a), a cholesterol-rich particle that circulates in the blood. CHARGE oversees genomic studies of five large study populations in the United States and Europe, including the Framingham Heart Study (FHS), which is a part of the National Heart, Lung, and Blood Institute (NHLBI) at the National Institutes of Health.

The findings will be published in the Feb. 7 issue of The New England Journal of Medicine.

"No medications tested to date have shown an ability to prevent or even slow progression of aortic stenosis, and treatments are limited beyond the major step of replacing the aortic valve," said study co-author Christopher O'Donnell, M.D., M.P.H., senior director for genome research at the NHLBI and associate director of the FHS. "By identifying for the first time a common genetic link to aortic stenosis, we might be able to open up new therapeutic options."

The CHARGE researchers conducted a genome-wide analysis of 2.5 million known genetic variants in a group of nearly 7,000 white participants. The analysis identified a variant in the lipoprotein(a), or Lp(a), gene that was highly correlated with calcification of the aortic valve, as measured by computed tomography (CT) scanning. Follow-up analysis in more than 6,000 additional participants, including Hispanics, African-Americans, and Chinese-Americans, confirmed this correlation. The variant was present in about 7 percent of the study population and the people who carry it generally had higher amounts of Lp(a) circulating in their blood. The function of Lp(a) is unknown, but it is associated with an elevated risk of heart disease.

Another independent analysis carried out by CHARGE followed participants in Sweden and Denmark, and found that people with the Lp(a) variant had higher risks of clinical heart valve disease and of needing valve replacement surgery.

"What makes these findings provocative is that we linked the genetic variant with a physiological change in lipoprotein levels, disease precursor in the form of calcium buildup, and fully diagnosed aortic valve disease, across multiple ethnicities," O'Donnell said. "The study suggests a causal relation between Lp(a) and aortic valve disease, but further work will be needed to see whether medications that lower Lp(a) levels can lower the risk or slow the development of valve disease."

In addition to the FHS, this work included data from the NHLBI's Multi-Ethnic Study of Atherosclerosis, the Age Gene/Environment Susceptibility Study, the Heinz Nixdorf Recall Study, the Malmo Diet and Cancer Study, and the Copenhagen City Heart Study.

To schedule an interview with an NHLBI spokesperson, contact the NHLBI Office of Communications at 301-496-4236 or log in to unmask.

The National Heart, Lung, and Blood Institute (NHLBI) is a component of the National Institutes of Health. NHLBI plans, conducts, and supports research related to the causes, prevention, diagnosis, and treatment of heart, blood vessel, lung, and blood diseases; and sleep disorders. The Institute also administers national health education campaigns on women and heart disease, healthy weight for children, and other topics. NHLBI press releases and other materials are available online at: .

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov.


Read at BioSpace.com


comments powered by Disqus
   

ADD TO DEL.ICIO.US    ADD TO DIGG    ADD TO FURL    ADD TO STUMBLEUPON    ADD TO TECHNORATI FAVORITES