BioSpace.com

Biotech and Pharmaceutical
News & Jobs
Search the Site
 
   
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Browse Biotech Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  US Device
Europe
Asia

DIVERSITY

INVESTOR
Market Summary
News
IPOs

PROFILES
Company Profiles

START UPS
Companies
Events

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Biotech Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

 News | News By Subject | News by Disease News By Date | Search News
eNewsletter Signup
Miles
Km80.5

   

Multinational Research Team Led by J. Craig Venter Institute's Ewen Kirkness Sequence Body Louse Genome


6/22/2010 10:44:03 AM

ROCKVILLE, Md., June 21 /PRNewswire-USNewswire/ -- A global research team led by scientists from the J. Craig Venter Institute (JCVI) today published a new study in the Proceedings of the National Academy of Sciences describing the sequencing and analysis of the body louse genome. Lead author, Ewen Kirkness, Ph.D., JCVI, directed the sequencing and gene-finding efforts in the project. Detailed analysis of the genome was then conducted by a large international group of 71 scientists, coordinated by Barry Pittendrigh, University of Illinois, and Professor Evgeny Zdobnov, University of Geneva Medical School. Comparative studies of the body louse genome with other sequenced species revealed features that will enhance our understanding of the relationships between disease-vector insects, the pathogens they transmit, and the affected human hosts.

The human body louse, Pediculus humanus humanus, is a human parasite and is responsible for the transmission of bacteria that cause epidemic typhus, relapsing fever and trench fever. The team at the JCVI focused on the DNA sequencing, genome assembly and identification of genes. In addition to the targeted louse genome, the project unexpectedly yielded the complete genome sequence of a bacterial species, Riesia, that lives in close association with lice, and which is essential for survival of the insects. This study revealed that, despite having the smallest known insect genome (108 Mb) and a parasitic lifestyle, the body louse has retained a remarkably complete repertoire of 10,773 protein-coding genes. The compactness of the louse genome helped to predict the encoded genes accurately. The researchers believe that the genome will be a valuable reference for evolutionary studies of insect species, especially in the areas related to insect growth and development.

The body louse usually lives in clothing, with infestations associated with unwashed clothes for prolonged time. Infestations of body lice and the closely related head lice can cause a range of problems in humans from mild irritations to serious disease. The body louse can carry harmful bacteria, such as Rickettsia prowazekii that causes epidemic typhus, and is classified as a category B bioterrorism agent. Body and head lice are also becoming increasingly resistant to traditional pesticides so the sequencing of the body louse genome will help in the important search for new control methods facilitated by detailed molecular studies. Having the complete genome of the bacteria, Riesia, that lives within lice and provide the lice with essential nutrients such as vitamin B5, provides additional potential targets for lice eradication.

According to lead author Dr. Kirkness, "With the genome sequences of the human host, the body louse parasite, and the Riesia endosymbiont now in hand, researchers have the opportunity to gain greater insights into the co-evolution of a host-parasite-symbiont trio with the potential outcome being eradication of the body louse."

About the J. Craig Venter Institute

The JCVI is a not-for-profit research institute in Rockville, MD and La Jolla, CA dedicated to the advancement of the science of genomics; the understanding of its implications for society; and communication of those results to the scientific community, the public, and policymakers. Founded by J. Craig Venter, Ph.D., the JCVI is home to approximately 400 scientists and staff with expertise in human and evolutionary biology, genetics, bioinformatics/informatics, information technology, high-throughput DNA sequencing, genomic and environmental policy research, and public education in science and science policy. The legacy organizations of the JCVI are: The Institute for Genomic Research (TIGR), The Center for the Advancement of Genomics (TCAG), the Institute for Biological Energy Alternatives (IBEA), the Joint Technology Center (JTC), and the J. Craig Venter Science Foundation. The JCVI is a 501 (c) (3) organization. For additional information, please visit http://www.JCVI.org.

SOURCE J. Craig Venter Institute



Read at BioSpace.com

   

ADD TO DEL.ICIO.US    ADD TO DIGG    ADD TO FURL    ADD TO STUMBLEUPON    ADD TO TECHNORATI FAVORITES