News | News By Subject | News by Disease News By Date | Search News
Get Our FREE
Industry eNewsletter
email:    
   

Genopole® Major Advance in the Observation of DNA Molecules



12/7/2007 7:52:59 AM

EVRY, France, December 7 /PRNewswire/ -- The teams of Eric Le Cam, from the "Molecular Interactions and Cancer" lab and David Pastre, from the "Structure and Activity of Normal and Pathological Biomolecules - SABNP" lab (Inserm/Universite d'Evry-Val-d'Essonne, U829, Genopole Evry) have successfully developed a new method for observing DNA using atomic force microscopy (AFM) under intracellular physico-chemical conditions. These findings, published in the Journal "Biomacromolecules" on November 19, 2007, were validated by the observation of various degrees of DNA compaction -- a key factor in replication and transcription. This method will facilitate research into DNA/protein interactions and their impacts on DNA activity, DNA chips and nanobiotechnology.

The first phase of these investigations was to find a method for absorbing DNA on a mica surface (a clay mineral traditionally used in biomolecular imaging), in the presence of monovalent salts. These findings, themselves representing a major advance in current techniques, make it possible to observe DNA molecules using atomic force microscopy (AFM) under intracellular physico-chemical conditions (molecular crowding, monovalent salts). Until recently, it was in fact impossible to obtain nanometric 3D high resolution images of DNA molecules using AFM under such lifelike conditions.

To validate this method and demonstrate the relevance of these novel imaging conditions, researchers chose to examine how macromolecular crowding affected the compaction of DNA molecules. The presence of very large molecules in the intracellular environment impacts directly the degree of DNA compaction, and thus its activity. This phenomenon, which is well-known among biologists, but poorly studied has a critical influence on replication, transcription and, consequently, on gene expression.

This method enables the observation of DNA molecules in various physiological conditions, in particular in interaction with proteins; it can also be used in the fields of DNA chips or nanobiotechnology.

Reference: "Atomic Force Microscopy Imaging of DNA under Macromolecular Crowding Conditions"

David Pastre, Loic Hamon, Alain Mechulam, Isabelle Sorel, Sonia Baconnais, Patrick Curmi, Eric Le Cam, Olivier Pietrement, Biomacromolecules, 2007, Nov 19.

Genopole(R)

Genopole(R) is France's first biopark dedicated to research into genetics and biotechnology. The campus is home to private and public research laboratories, biotech companies as well as university teaching facilities (University of Evry Val d'Essonne). With 21 research labs on campus and a portfolio of 62 biotech companies, therapeutic innovation is the core concern of Genopole(R) stakeholders. Its objective is to promote the development of research into genomics, post-genomics and related sciences and transfer technology to the industrial sector, develop advanced learning in these areas, and create and support biotech companies. http://www.genopole.fr

CONTACT: Genopole Press Contact: Benedicte Robert, +33-1-60-87-83-10,
benedicte.robert@genopole.fr; IGR Press Contact: Chloe Louys,
+33-1-42-11-50-59 / +33-6-17-66-00-26, chloe.louys@igr.fr; SABNP contact:
Patrick Curmi, David Pastre, +33-1-69-47-03-23, pcurmi@univ-evry.fr,
david.pastre@univ-evry.fr


Read at BioSpace.com


comments powered by Disqus
   

ADD TO DEL.ICIO.US    ADD TO DIGG    ADD TO FURL    ADD TO STUMBLEUPON    ADD TO TECHNORATI FAVORITES