BioSpace.com

Biotech and Pharmaceutical
News & Jobs
Search the Site
 
   
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Browse Biotech Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  US Device
Europe
Asia

DIVERSITY

INVESTOR
Market Summary
News
IPOs

PROFILES
Company Profiles

START UPS
Companies
Events

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Biotech Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

 News | News By Subject | News by Disease News By Date | Search News
eNewsletter Signup
Miles
Km80.5

   

Chronix Biomedical and University Medical Center Researchers Develop Rapid, Cost-Effective Early Detection Method for Organ Transplant Injury


8/28/2013 9:51:41 AM

free biotech news Get the latest biotech news where you want it. Sign up for the free GenePool newsletter today!

Hercules, CA — August 27, 2013 — A recently reported blood test for the early detection of organ transplant injury could enable more timely therapeutic intervention in transplant patients and thus help to avoid long-term damage. As described by scientists at the University Medical Center Göttingen and Chronix Biomedical, a molecular diagnostics company, the new method uses Bio-Rad Laboratories’ Droplet Digital PCR (ddPCR™) technology to overcome the obstacles of earlier tests, which were both time-consuming and costly. The method was presented at the American Association of Clinical Chemistry (AACC) 2013 annual meeting and has been accepted for publication inClinical Chemistry.

Approximately 28,000 organ transplantations (known as grafts) are performed each year in the U.S., with another 100,000 patients on waiting lists. However, transplant patients are often subject to organ rejection: acute rejection of liver transplants within three years is nearly 22 percent, while heart and lung rejection is close to 50 percent. In addition, nearly half of all of kidney transplants fail within ten years.

Graft-derived cell-free DNA (GcfDNA) in the circulation of transplant recipients is a potential rejection biomarker. But previous attempts to determine GcfDNA, which require parallel sequencing of donor and recipient DNA, are expensive and require a long turnaround and use of donor DNA. University Medical Center Göttingen and Chronix Biomedical researchers sought to develop a new method in an attempt to address these drawbacks.

Using ddPCR for a Fast, Cost-Effective Test

The researchers applied Bio-Rad’s ddPCR technology to quantify graft-derived cfDNA in recent liver transplant patients and in stable patients who had undergone a transplant procedure more than six months earlier. ddPCR technology allowed them to develop a cost-effective and fast laboratory test that detects cfDNA being released into the blood stream by dying cells from the transplanted organ.

“GcfDNA from dying graft cells is the most direct and sensitive indicator of organ rejection and we needed an instrument that could measure it,” said Chronix Biomedical’s chief technology officer and the study’s senior author, Ekkehard Schütz, MD, PhD. “ddPCR added an additional level of reliability and precision to traditional PCR.”

Sequencing methods typically require batch sampling, but by using ddPCR, researchers are able to run single samples. Additionally, this method is reducing test time from three days or more to one day, and reducing costs by 90 percent. The study authors were able to address the need for donor DNA by preselecting SNPs that ensure enough heterogeneity between donor and recipient. The new blood test can also deliver results up to several earlier than the conventional aspartate aminotransferase (AST) and bilirubin tests for liver transplantation rejection, with the potential for an immediate positive impact on patient care.

“We will now be able to detect subclinical rejection and early intervention may allow us to avoid a full-blown rejection,” said Michael Oellerich, MD, FACP, FRCPath and Lower Saxony distinguished professor of clinical chemistry at the University Medical Center Göttingen and the study’s principal investigator. “This test may be useful to personalize immunosuppression and to improve long-term outcomes.”

“Detecting nonhost cfDNA is the third example of the commercial potential of cfDNA diagnostics. Researchers will now be able to extend the applications from fetal cfDNA in maternal blood and personalized biomarkers for minimal residual disease in cancer to solid organ transplantation,” said Howard Urnovitz, PhD, Chronix Biomedical’s chief executive officer.

“We are looking forward to the improvements in precision medicine we can offer with ddPCR and this example in transplantation highlights the diagnostic value for the technology,” said Paula Stonemetz, director diagnostic business development for Bio-Rad Laboratories’ Digital Biology Center.

The study’s researchers were awarded a National Academy of Clinical Biochemistry (NACB) Distinguished Abstract Award at the 2013 AACC annual conference. The results are part of a larger planned study to determine if cfDNA is the earliest indication of a transplant organ rejection.

About Bio-Rad

Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb) has been at the center of scientific discovery for 60 years, manufacturing and distributing a broad range of products for life science research and clinical diagnostic markets. The company is renowned for its commitment to quality and customer service among university and research institutions, hospitals, public health and commercial laboratories, as well as the biotechnology, pharmaceutical, and food safety industries. Founded in 1952, Bio-Rad is based in Hercules, California, and serves more than 100,000 research and industry customers through its global network of operations. The company employs approximately 7,600 people worldwide and had revenues exceeding $2 billion in 2012. Visit us at www.bio-rad.com.

This release contains certain forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995 and Section 21E of the Securities Exchange Act of 1934. Forward-looking statements generally can be identified by the use of forward-looking terminology such as, “believe,” “expect,” “may,” “will,” “intend,” “estimate,” “continue,” or similar expressions or the negative of those terms or expressions. Such statements involve risks and uncertainties, which could cause actual results to vary materially from those expressed in or indicated by the forward-looking statements. For further information regarding the Company's risks and uncertainties, please refer to the “Risk Factors” in the Company’s public reports filed with the Securities and Exchange Commission, including the Company’s most recent Annual Report on Form 10-K, Quarterly Reports on Form 10-Q and Current Reports on Form 8-K. The Company cautions you not to place undue reliance on forward-looking statements, which reflect an analysis only and speak only as of the date hereof. Bio-Rad Laboratories, Inc., disclaims any obligation to update these forward-looking statements.

For more information contact:

Richard Kurtz

Bio-Rad

510-741-5638

Richard_Kurtz@bio-rad.com

Ken Li

Chempetitive Group

312-997-2436 x 112

kli@chempetitive.com

Help employers find you! Check out all the jobs and post your resume.


Read at BioSpace.com

   

ADD TO DEL.ICIO.US    ADD TO DIGG    ADD TO FURL    ADD TO STUMBLEUPON    ADD TO TECHNORATI FAVORITES