News | News By Subject | News by Disease News By Date | Search News
Get Our FREE
Industry eNewsletter
email:    
   

California Institute of Technology Uses Nanoparticle Tracking Analysis to Characterize New Therapeutic Nanoparticles


4/30/2013 10:17:29 AM

Staying up-to-date has never been simpler. Sign up for the free GenePool newsletter today!

Salisbury, UK, 30th April, 2013: NanoSight reports on how Nanoparticle Tracking Analysis, NTA, is being applied in the Chemical Engineering Department of the California Institute of Technology to study nanoparticle-based therapeutics being developed for the treatment of illnesses such as dementia and Alzheimer's.

The central theme of the Mark E Davis research group at Caltech is the use of chemical engineering concepts (synthetic chemistry and analytical engineering problem solving) to answer important fundamental questions in the physical and life sciences. Current research entails designs for the synthesis of inorganic and hybrid, organic-inorganic materials for catalysis and biocompatible materials for the delivery of macromolecular therapeutics.

Dr Devin Wiley is a recent graduate in the Davis Group. His research focuses on delivering nanoparticle therapies across the blood-brain-barrier using targeted nanoparticles. Pathologies of interest include senior dementia, Parkinson's and Alzheimer's diseases. The strategy is to deliver large-molecule therapeutics tucked inside nanoparticles that have proteins attached to their surface. These proteins will bind specifically to receptors on the blood-brain-barrier, allowing the nanoparticles and their therapeutic cargo to be shuttled across the barrier and released into the brain. To this end, Wiley requires rapid, easy-to-use characterization techniques for the nanoparticles he synthesizes.

Describing his work, Wiley says "We have two main areas of research in our group. One is developing nanoparticle-based therapeutics for the treatment of cancer. The other is designing therapeutics to be delivered to the brain. So far, we have used the NanoSight Nanoparticle Tracking Analysis system to size the nanoparticles we create and then to measure their zeta potentials."

"We selected NTA as it is a convenient and rapid method to size the nanoparticles we have manufactured. Visual confirmation of the nanoparticles is useful. Prior to NTA, we used DLS and a ZetaPALS system from Brookhaven. We would also use CryoTEM to size the nanoparticles. The positive advantage of NTA is its ability to visualize each nanoparticle and then to obtain size distributions based on individual particle measurements. Sizing by NTA is much faster and much cheaper than CryoTEM imaging."

Wiley's work at Caltech has been also showcased as part of TedxCaltech: The Brain. In a recent presentation, he described this project as a work-around—a way to sneak therapeutics past the barrier and into the brain to potentially treat neurologic diseases: http://tedxcaltech.caltech.edu/content/devin-wiley.

To find out about the company and to learn more about particle characterization using NanoSight's unique nanoparticle tracking analysis solutions, visit www.nanosight.com and register to receive the next issue of NanoTrail, the company's electronic newsletter.

About NanoSight:

NanoSight delivers the world's most versatile and proven multi-parameter nanoparticle analysis in a single instrument.

NanoSight's "Nanoparticle Tracking Analysis" (NTA) detects and visualizes populations of nanoparticles in liquids down to 10 nm, dependent on material, and measures the size of each particle from direct observations of diffusion. Additionally, NanoSight measures concentration and a fluorescence mode differentiates suitably-labelled particles within complex background suspensions. Zeta potential measurements are similarly particle-specific. It is this particle-by-particle methodology that takes NTA beyond traditional light scattering and other ensemble techniques in providing high-resolution particle size distributions and validates data with information-rich video files of the particles moving under Brownian motion.

This simultaneous multiparameter characterization matches the demands of complex biological systems, hence its wide application in development of drug delivery systems, of viral vaccines, and in nanotoxicology. This real-time data gives insight into the kinetics of protein aggregation and other time-dependent phenomena in a qualitative and quantitative manner. NanoSight has a growing role in biodiagnostics, being proven in detection and speciation of nanovesicles (exosomes) and microvesicles.

NanoSight has installed more than 500 systems worldwide with users including BASF, GlaxoSmithKline, Merck, Novartis, Pfizer, Proctor and Gamble, Roche and Unilever together with the most eminent universities and research institutes. NanoSight's technology is validated by 600+ third party papers citing NanoSight results. NanoSight's leadership position in nanoparticle characterization is consolidated further with publication of an ASTM International standard, ASTM E2834, which describes the NTA methodology for detection and analysis of nanoparticles. For more information, visit www.nanosight.com.

NanoSight Limited

Minton Park

London Road

Amesbury SP4 7RT UK

T +44(0)1980 676060

F +44(0)1980 624703

www.nanosight.com

sarah.newell@nanosight.com

Talking Science Limited

39 de Bohun Court

Saffron Walden

Essex CB10 2BA UK

T +44(0)1799 521881

M +44(0)7843 012997

www.talking-science.com

jezz@talking-science.com



Help employers find you! Check out all the jobs and post your resume.

Read at BioSpace.com

comments powered by Disqus
   

ADD TO DEL.ICIO.US    ADD TO DIGG    ADD TO FURL    ADD TO STUMBLEUPON    ADD TO TECHNORATI FAVORITES