BioSpace.com

Biotech and Pharmaceutical
News & Jobs
Search the Site
 
   
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Browse Biotech Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  US Device
Europe
Asia

DIVERSITY

INVESTOR
Market Summary
News
IPOs

PROFILES
Company Profiles

START UPS
Companies
Events

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Biotech Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

 News | News By Subject | News by Disease News By Date | Search News
eNewsletter Signup
Miles
Km80.5

   

Boston Micromachines Introduces High Performance Reflective Optical Chopper for Laser Science Applications


2/4/2013 9:40:06 AM

SAN FRANCISCO, CA--(Marketwire - February 04, 2013) - Boston Micromachines Corporation (BMC), a leading provider of MEMS-based deformable mirror (DM) products and adaptive optics systems, today introduced here at Photonics West the Reflective Optical Chopper (ROC). Designed to out-perform the traditional optical chopper, the ROC offers greater frequency range and a faster chopping speed without the need to alter the beam size.

Unlike traditional solutions which require the use of separate chopper wheels at different ranges of frequencies, the ROC can function continuously from sub-Hertz speeds up to 100kHz. Even more, the versatile optical chopper does not require reduction of the size of the beam at higher speeds. As an added feature, scientists can chop the beam with an arbitrary pattern simply by providing an input signal.

"Signal-to-noise ratio (SNR) improvement is important to many laser science applications," said Paul Bierden, president and CEO of Boston Micromachines. "Our high speed, large aperture ROC meets the demands of improving SNR."

The ROC works as a reflective diffraction grating, chopping the beam by varying between an unpowered flat mirror-state and a powered diffractive state. With a module that easily fits into a standard 1" optical mount, the ROC is operable within minutes of unpacking. The ROC can be operated either in standard mode with the on-board signal generator, or in custom mode using a user-generated 5-volt TTL signal.

Priced at $1,700 the ROC is currently available.

About Boston Micromachines Corporation
Founded in 1999, Boston Micromachines Corporation (BMC) is a leading provider of advanced microelectromechanical systems (MEMS) based mirror products and adaptive optics systems. By applying wavefront correction to produce high resolution images, BMC devices can be used for imaging biological tissue and the human retina and to enhance images blurred by the earth's atmosphere. The company's suite of award-winning compact deformable mirror (DM) products is the most cost-effective, highest performance mirrors in the market today. They are widely used to drive scientific discovery in astronomy, laser beam shaping, microscopy, vision science, and support a variety of defense applications. Customers include NASA, UC Berkeley, Oxford University, Lockheed Martin and Boston University. Located in Cambridge, MA, BMC is privately held and offers custom-designed manufacturing services in addition to its portfolio of standard DM products. For more information on BMC, please visit www.bostonmicromachines.com.


Press contact:

Laura MacSweeney
Red Javelin Communications
Email Contact
(781) 395-6420



Read at BioSpace.com

 
 

ADD TO DEL.ICIO.US    ADD TO DIGG    ADD TO FURL    ADD TO STUMBLEUPON    ADD TO TECHNORATI FAVORITES