News | News By Subject | News by Disease News By Date | Search News
Get Our FREE
Industry eNewsletter
email:    
   

Bio-Rad Laboratories, Inc. (BIO) Release: Droplet Digital PCR Enables Measurement Of Potential Cancer Survival Biomarker


12/4/2013 1:29:57 PM

free biotech news Get the latest biotech news where you want it. Sign up for the free GenePool newsletter today!

Seattle, WA – December 4, 2013 – Researchers at Fred Hutchinson Cancer Research Center have used Droplet Digital PCR (ddPCR™) to demonstrate for the first time the quantification of a special class of tumor-attacking immune cell known to improve cancer survival, a subpopulation of T-cells called tumor-infiltrating T-lymphocytes or TILs. The study, led by Dr. Jason Bielas, Associate Member of the Public Health Sciences Division at Fred Hutch, paves the way for further study of the role of TIL quantification in immunotherapy and as a cancer survival predictor.

"Now that we have the sensitivity and ability to reproducibly count TILs in tumors, we may be able to stratify and more effectively treat patients based on tumor TIL count, especially with immunotherapeutics coming to market," said Dr. Bielas, one of the lead authors of a paper reporting the TIL quantification results in Science Translational Medicine.

Quantifying TILs Using ddPCR

TILs directly attack tumor cells in a variety of cancer types. While the presence and quantity of TILs strongly correlate with increased patient survival, current tests are semiquantitative at best. As a result, TILs cannot be used for clinical decision making.

According to Dr. Bielas, TILs have a "genomic signature that can be digitally exploited." This signature, which exhibits a vast amount of diversity, determines the genetic identity, or clonality, of the T-cell receptors (TCR) expressed on the surface of each TIL. With the advent of digital PCR – and the generation of tens of thousands of data points produced by Droplet Digital PCR – it is now possible to quantify these signatures, enabling the determination of the number of TILs.

"There's no way you could do this with any method other than digital PCR because of the numerous primer pairs and probes that we have (45 forward primers, 13 reverse primers, and 30 probes)," said Dr. Bielas. "Digital PCR partitions all the reactions so you can amplify these targets independently of PCR efficiency without any competing side reactions."

Fred Hutch researchers developed the Droplet Digital PCR-based "QuanTILfy" assay using Bio-Rad Laboratories' QX100 ddPCR system. They then used QuanTILfy to count TILs, determine their frequency, and develop a grouping system to classify "clonality," which might be a marker of druggable targets.

Study Results

Fred Hutch researchers performed the QuanTILfy assay on primary tumors from 30 ovarian carcinoma patients with known survival outcomes, ranging from 1 to 122 months. TIL frequency was approximately threefold higher in patients with a survival rate of more than five years compared with patients with survival rates of less than two years. These results show that higher TIL levels correlate positively with patient survival, consistent with the hypothesis that TILs play an active role in suppressing tumor formation.

The researchers also demonstrated that QuanTILfy can be used to accurately and reproducibly characterize T-cell clonality in patients with T-cell acute lymphoblastic leukemia. In each case, they saw a single QuanTILfy assay subgroup, indicative of clonal T-cell expansion. This finding was confirmed by deep sequencing. The QuanTILfy assay proved to be both sensitive and accurate. In a mixture of human T-cells purified from blood and normal human lung fibroblasts, the assay demonstrated the ability to detect a single TCR rearrangement among 10,000 tumor cells. Importantly, it also demonstrated the ability of ddPCR technology to quantify a large number of markers simultaneously in a single reaction through multiplexing.

The authors acknowledge support from the Listwin Family Foundation (to J.H.B.), an Ellison Medical Foundation New Scholar award (AG-NS-0577-09, to J.H.B), an Outstanding New Environmental Scientist Award (ONES) (R01) from the National Institute of Environmental Health Sciences (R01ES019319, to J.H.B.), a grant from the Congressionally Directed Medical Research Programs/U.S. Department of Defense (W81XWH-10-1-0563, to J.H.B.), the Pacific Ovarian Cancer Research Consortium Ovarian Cancer SPORE Award (P50 CA083636), a Department of Defense Ovarian Cancer Idea Award (OC093221, to M.T.), a Susan G. Komen postdoctoral fellowship (to J.G.), and from the Canary Foundation (to M.T.).

About Fred Hutchinson Cancer Research Center

At Fred Hutchinson Cancer Research Center, home to three Nobel laureates, interdisciplinary teams of world-renowned scientists seek new and innovative ways to prevent, diagnose, and treat cancer, HIV/AIDS, and other life-threatening diseases. Fred Hutch's pioneering work in bone marrow transplantation led to the development of immunotherapy, which harnesses the power of the immune system to treat cancer with minimal side effects. An independent, nonprofit research institute based in Seattle, Fred Hutch houses the nation's first and largest cancer prevention research program, as well as the clinical coordination center of the Women's Health Initiative and the international headquarters of the HIV Vaccine Trials Network. Private contributions are essential or follow Fred Hutch on Facebook, Twitter, or YouTube.

About Bio-Rad

Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb) has been at the center of scientific discovery for 60 years, manufacturing and distributing a broad range of products for life science research and clinical diagnostic markets. The company is renowned for its commitment to quality and customer service among university and research institutions, hospitals, public health and commercial laboratories, as well as the biotechnology, pharmaceutical, and food safety industries. Founded in 1952, Bio-Rad is based in Hercules, California, and serves more than 100,000 research and industry customers through its global network of operations. The company employs approximately 7,300 people worldwide and had revenues exceeding $2 billion in 2012. Visit us at http://www.biorad.com.

Help employers find you! Check out all the jobs and post your resume.

Read at BioSpace.com


comments powered by Disqus
   

ADD TO DEL.ICIO.US    ADD TO DIGG    ADD TO FURL    ADD TO STUMBLEUPON    ADD TO TECHNORATI FAVORITES